Seeds in space: IAEA/FAO experiment goes the distance for better crops on earth

November 8, 2022, 9:30AMNuclear News
A Northrop Grumman Antares rocket, with the Cygnus spacecraft Sally Ride aboard (so named for first American woman to fly in space), launched at 5:32 a.m. EST on November 7, from NASA's Wallops Flight Facility in Virginia. The rocket is captured just after liftoff in this still image from NASA’s live broadcast of the event.

Seeds from the joint laboratories of the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations (FAO) are onboard a Cygnus spacecraft launched from NASA’s Wallops Flight Facility in Virginia early on November 7. Now orbiting the Earth en route to the International Space Station, the seeds are part of a commercial resupply mission with a payload that includes resources to support more than 250 scientific investigations.

Nuclear power’s moonshot: Three teams have one year to design a lunar power reactor

June 22, 2022, 9:30AMNuclear News
A conceptual illustration of a fission surface power system. (Image: NASA)

Three teams have been picked to design a fission surface power system that NASA could deploy on the moon by the end of the decade, NASA and Idaho National Laboratory announced today. A fission surface power project sponsored by NASA in collaboration with the Department of Energy and INL is targeting the demonstration of a 40-kWe reactor built to operate for at least 10 years on the moon, enabling lunar exploration under NASA’s Artemis program. Twelve-month contracts valued at $5 million each are going to Lockheed Martin (partnered with BWX Technologies and Creare), Westinghouse (partnered with Aerojet Rocketdyne), and IX (a joint venture of Intuitive Machines and X-energy, partnered with Maxar and Boeing).

Defense agency invests in fusion- and radioisotope-powered space propulsion

May 19, 2022, 9:30AMNuclear News
Artist’s rendering of USNC spacecraft using EmberCore. (Image: DIU)

The Defense Innovation Unit (DIU), a Department of Defense organization focused on swiftly putting commercial technology to use in the U.S. military, has awarded contracts for two nuclear technologies—compact fusion and radioisotope heat—for spacecraft that could carry a high-power payload and freely maneuver in cislunar space. The objective is to accelerate ground and flight testing and launch a successful orbital prototype demonstration of each approach in 2027.

DOD seeks in-space demo of nuclear rocket engine in FY 2026

May 9, 2022, 12:00PMNuclear News

The Department of Defense wants to deploy spacecraft in cislunar space—the area between Earth and the moon’s orbit—with thrust and agility that only nuclear thermal propulsion (NTP) can provide. The Defense Advanced Research Projects Agency (DARPA), through its Demonstration Rocket for Agile Cislunar Operations (DRACO) program, is looking to private industry for the design, development, fabrication, assembly, and testing of a nuclear thermal rocket engine fueled with high-assay low-enriched uranium fuel to heat a liquid hydrogen propellant.

From terrestrial to celestial: NETS connects nuclear professionals with space missions

April 14, 2022, 3:00PMNuclear NewsAmy Reed
NETS participants are credited with helping relaunch the nation’s domestic production of Pu-238 to fuel the Mars Perseverance rover. (Photo: NASA)

Connecting nuclear engineers and scientists with space exploration missions has been a focus of the American Nuclear Society’s Aerospace Nuclear Science and Technology Division since its creation in 2008. One of the main ways those connections are made is through the Nuclear and Emerging Technologies for Space (NETS) conference, which the division supports in conjunction with the National Aeronautics and Space Administration.

Universities study liquid-fueled nuclear thermal propulsion concept for NASA

March 11, 2022, 12:00PMNuclear News
Ben Campbell, a graduate research assistant and master’s degree student in aerospace systems engineering, works on the Bubbling Liquid Experiment Navigating Driven Extreme Rotation, or BLENDER, device at UAH’s Johnson Research Center. (Photo: UAH/Michael Mercier)

With three commercial teams under contract to produce reactor designs for nuclear thermal propulsion rockets that would use solid high-assay low-enriched uranium fuel to heat hydrogen propellant, NASA’s investment in nuclear thermal propulsion (NTP) has increased in recent years. But just as there is more than one way to fuel a terrestrial reactor, other fuels are under consideration for future NTP rocket engines.

Looking back at 2021—Nuclear News January through March

January 7, 2022, 10:35AMNuclear News

This is the second of five articles to be posted today to look back at the top news stories of 2021 for the nuclear community. The full article, "Looking back at 2021,"was published in the January 2022 issue of Nuclear News.

Quite a year was 2021. In the following stories, we have compiled what we feel are the past year’s top news stories from the January-March time frame—please enjoy this recap from a busy year in the nuclear community.

  • Click here to see the first article in the series.

BWXT delivers reactor fuel that could power a roundtrip to Mars

December 14, 2021, 9:30AMNuclear News
Coated uranium fuel kernels, as viewed through a glovebox. (Photo: BWXT)

Nuclear thermal propulsion (NTP) is one technology that could propel a spacecraft to Mars and back, using thermal energy from a reactor to heat an onboard hydrogen propellant. While NTP is not a new concept, fuels and reactor concepts that can withstand the extremely high temperatures and corrosive conditions experienced in the engine during spaceflight are being designed now.

BWX Technologies announced on December 13 that it has delivered coated reactor fuels to NASA for testing in support of the Space Technology Mission Directorate’s NTP project. BWXT is developing two fuel forms that could support a reactor ground demonstration by the late 2020s, as well as a third, more advanced and energy-dense fuel for potential future evaluation. BWXT has produced a videoof workers processing fuel kernels in a glovebox.

Becoming agile and innovative in an evolving nuclear landscape: Changing the industry narrative for a strong future

November 29, 2021, 7:00AMNuclear NewsGleb Tsipursky
Diablo Canyon nuclear plant. (Photo: PG&E)

Last April, Entergy had to close its Indian Point nuclear plant. That’s despite the plant’s being recognized as one of the best-run U.S. nuclear plants. That’s also despite its 20-year license extension process having been nearly completed, with full support from the Nuclear Regulatory Commission.

This closure was due in large part to opposition by antinuclear environmental groups. These groups also mobilized existing negative public opinion on nuclear energy to get politicians to oppose the plant’s license extension. Another factor is unfair market conditions. Nuclear energy doesn’t get due government support—unlike solar, wind, and hydro—despite delivering clean, zero-emissions energy.

Countdown to fission on the moon: Candidate designs wanted

November 23, 2021, 3:00PMNuclear News
Artist’s concept of a fission surface power system on Mars. (Image: NASA)

NASA and Idaho National Laboratory have just opened a competitive solicitation for U.S. nuclear and space industry leaders to develop innovative technologies for a fission surface power system that could be deployed on the surface of the moon by the end of the decade. Battelle Energy Alliance, the managing and operating contractor for INL, issued a request for proposals and announced the news on November 19. Proposals are due February 17.

Nuclear propulsion on the rise as private companies and NASA redefine space travel

July 22, 2021, 12:00PMNuclear News
Hot-fire test at Blue Origin’s West Texas launch facility in July 2019. (Photo: Blue Origin)

In July 1969, the public’s attention was fixated on NASA’s Apollo 11 mission—a “giant leap for mankind” that was memorably marked by Neil Armstrong as he stepped onto the surface of the moon. This July, the possibilities of spaceflight are once again capturing the public’s imagination and news headlines. While NASA invests in nuclear propulsion research and development to stretch the limits of U.S. space missions, private companies Virgin Galactic and Blue Origin are stretching the definition of “astronaut” and proving they can offer a high-altitude thrill to paying customers.

Extraterrestrial Pu found in the ocean sheds light on cosmic events

May 17, 2021, 9:31AMNuclear News
The Crab nebula, an iconic Milky Way supernova remnant, as viewed by the Herschel Space Observatory and the Hubble Space Telescope. (Image: NASA, ESA, and Allison Loll/Jeff Hester, Arizona State University)

Traces of freshly made plutonium and radioactive iron recovered from the bottom of the Pacific Ocean are contributing to an understanding of how heavier elements are created from exploding stars and other cosmic events, according to a National Public Radio report.

ORNL mines Pm-147 from plutonium by-products

March 15, 2021, 9:29AMNuclear News

Technicians use a manipulator arm in a shielded cave in ORNL’s Radiochemical Engineering Development Center to separate concentrated Pm-147 from by-products generated through the production of Pu-238. Photo: Richard Mayes/ORNL, DOE

A method developed at Oak Ridge National Laboratory is allowing the Department of Energy to cull promethium-147 from plutonium-238 produced for space exploration. Under an ORNL project for the DOE Isotope Program that began last year, the lab has been mining Pm-147, a rare isotope used in nuclear batteries and to measure the thickness of materials, from the fission products left when Pu-238 is separated out of neptunium-237 targets. The Np-237 targets are irradiated in Oak Ridge’s High Flux Isotope Reactor, a DOE Office of Science user facility, to produce the Pu-238.

According to the DOE, the primary goal of the project is to reestablish the domestic production of Pm-147, which is in short supply. As a side benefit, the project is reducing the concentrations of radioactive elements in the waste so that it can be disposed of safely in simpler, less expensive ways, both now and in the future.

“In the process of recovering a valuable product that the DOE Isotope Program wants, we realized we can reduce our disposal costs,” said Richard Mayes, group leader for ORNL’s Emerging Isotope Research. “There’s some synergy.”

As Perseverance makes tracks, NASA must plan its next Mars move

March 10, 2021, 3:00PMNuclear News

NASA’s Mars 2020 Perseverance rover took its first drive on the surface of Mars on March 4, traversing 21.3 feet and executing a 150-degree turn in about 33 minutes. The drive was one part of an ongoing check and calibration of every system, subsystem, and instrument on Perseverance, which landed on Mars on February 18.

The NASA team has also verified the functionality of Perseverance’s instruments, deployed two wind sensors, and unstowed the rover’s 7-foot-long robotic arm for the first time, flexing each of its five joints over the course of two hours.

With relatively little fanfare, the functionality of Perseverance’s radioisotope thermoelectric generator (RTG)—assembled at Idaho National Laboratory and fueled by the decay of plutonium-238—is also being proved. It is reliably providing the power that Perseverance’s mechanical and communication systems require.

DOE steps up plutonium production for future space exploration

February 23, 2021, 12:02PMNuclear News

This high-resolution still image is from a video taken by several cameras as NASA’s Perseverance rover touched down on Mars on February 18. Credits: NASA/JPL-Caltech

NASA’s Perseverance rover, which successfully landed on Mars on February 18, is powered in part by the first plutonium produced at Department of Energy laboratories in more than 30 years. The radioactive decay of Pu-238 provides heat to radioisotope thermoelectric generators (RTGs) like the one onboard Perseverance and would also be used by the Dynamic Radioisotope Power System, currently under development, which is expected to provide three times the power of RTGs.

Idaho National Laboratory is scaling up the production of Pu-238 to help meet NASA’s production goal of 1.5 kg per year by 2026, the DOE announced on February 17.

NASA’s radioisotope-powered science will persevere on Mars

February 19, 2021, 3:00PMNuclear News

Members of the Perseverance rover team in Mission Control at NASA’s Jet Propulsion Laboratory react after receiving confirmation of a successful landing. Photo: NASA/Bill Ingalls

NASA mission control and space science fans around the world celebrated the safe landing of the Mars 2020 Perseverance rover on February 18 after a journey of 203 days and 293 million miles. Landing on Mars is difficult—only about 50 percent of all previous Mars landing attempts have succeeded—and a successful landing for Perseverance, the fifth rover that NASA has sent to Mars, was not assured. Confirmation of the successful touchdown was announced at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., at 3:55 p.m. EST.

“This landing is one of those pivotal moments for NASA, the United States, and space exploration globally—when we know we are on the cusp of discovery and sharpening our pencils, so to speak, to rewrite the textbooks,” said acting NASA administrator Steve Jurczyk. “The Mars 2020 Perseverance mission embodies our nation’s spirit of persevering even in the most challenging of situations, inspiring, and advancing science and exploration. The mission itself personifies the human ideal of persevering toward the future and will help us prepare for human exploration of the Red Planet.”

Only radioisotope thermoelectric generators (RTG) can provide the long-lasting, compact power source that Perseverance needs to carry out its long-term exploratory mission. Perseverance carries an RTG powered by the radioactive decay of plutonium-238 that was supplied by the Department of Energy. ANS president Mary Lou Dunzik-Gougar and CEO and executive director Craig Piercy congratulated NASA after the successful landing, acknowledging the critical contributions of the DOE’s Idaho National Laboratory, Oak Ridge National Laboratory, and Los Alamos National Laboratory.

Statement on the successful landing of NASA's Perseverance rover on Mars

February 18, 2021, 3:13PMPress Releases

ANS congratulates NASA for the successful landing of Perseverance on Mars. We look forward to watching from afar its exploration of the Red Planet and search for past microbial life. This is a proud moment as well for nuclear science and technology as a multi-mission radioisotope thermoelectric generator will be powering the rover to mission success.

INL seeks efficiency boost for radioisotope-powered spacecraft

February 16, 2021, 12:20PMNuclear News

The RTG used to power the Mars Perseverance rover is shown here being placed in a thermal vacuum chamber for testing in a simulated near-space environment. Source: INL

The Department of Energy’s Idaho National Laboratory is celebrating the scheduled landing of the Perseverance rover on the surface of Mars in just two days’ time with a live Q&A today, February 16, from 3 p.m. to 4:30 p.m. EST).

INL and Battelle Energy Alliance, its management and operating contractor, are already looking ahead to the next generation of plutonium-powered spacecraft: the Dynamic Radioisotope Power System (Dynamic RPS). INL announced on February 15 that it is partnering with NASA and the DOE to seek industry engagement to further the design of this new power system.