Newsom proposes $1.4 billion loan to keep Diablo Canyon running

August 17, 2022, 9:30AMNuclear News
The Diablo Canyon nuclear power plant.

There is still a chance for California’s last remaining nuclear power plant to stay open.

Last Friday, more than 50 nuclear advocates testified in support of the Diablo Canyon nuclear power plant at a California Energy Commission workshop. Many spoke of the need for California to shore up its electricity grid in the face of coming heat waves and power outages. Others emphasized that closing the plant, which generates 2.2 GW of electricity and currently provides 8.6 percent of the state’s total supply and about 15 percent of its low-carbon electricity, would be devastating to California’s emission-reduction goals.

Ten private fusion companies get national lab and university access from INFUSE

July 7, 2022, 3:07PMNuclear News

The Department of Energy announced awards for 18 Innovation Network for Fusion Energy (INFUSE) projects on July 6 that link private fusion energy developers with DOE national laboratories (and, in a first for the program, with U.S. universities) to overcome scientific and technological challenges in fusion energy development. The 18 selected projects include representation from 10 private companies, three national labs, and eight universities.

MIT and Commonwealth Fusion Systems agree to five-year SPARC collaboration

May 16, 2022, 7:01AMNuclear News
PSFC director Dennis Whyte (left) and CFS chief executive officer Bob Mumgaard in the test hall at MIT’s Plasma Science and Fusion Center. (Photo: Gretchen Ertl, CFS/MIT-PSFC)

The Massachusetts Institute of Technology’s Plasma Science and Fusion Center (PSFC) recently announced it will expand its involvement in fusion energy research and education under a new five-year agreement with Commonwealth Fusion Systems (CFS), a fusion energy company that got its start at MIT and is now building what it says will be the world’s first net-energy fusion machine—the demo-scale SPARC.

“CFS will build SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education,” said PSFC director Dennis Whyte in describing the collaboration.

SLO county board supports life extension for Diablo Canyon

February 17, 2022, 12:04PMNuclear News
The Diablo Canyon nuclear power plant

The San Luis Obispo County Board of Supervisors earlier this week endorsed extending the life of Diablo Canyon—California’s last operating nuclear power facility—which owner and operator Pacific Gas and Electric Company has scheduled for permanent closure in 2025. The two-unit, 2,289-MWe plant is located in San Luis Obispo County, near Avila Beach.

Becoming agile and innovative in an evolving nuclear landscape: Changing the industry narrative for a strong future

November 29, 2021, 7:00AMNuclear NewsGleb Tsipursky
Diablo Canyon nuclear plant. (Photo: PG&E)

Last April, Entergy had to close its Indian Point nuclear plant. That’s despite the plant’s being recognized as one of the best-run U.S. nuclear plants. That’s also despite its 20-year license extension process having been nearly completed, with full support from the Nuclear Regulatory Commission.

This closure was due in large part to opposition by antinuclear environmental groups. These groups also mobilized existing negative public opinion on nuclear energy to get politicians to oppose the plant’s license extension. Another factor is unfair market conditions. Nuclear energy doesn’t get due government support—unlike solar, wind, and hydro—despite delivering clean, zero-emissions energy.

ANS virtual grad school fair is coming up

November 11, 2021, 9:30AMANS News

ANS is hosting a virtual Graduate School Fair on Friday, November 19, from 3:30 p.m. to 6:30 p.m. (EST). The goal of the event is to help prepare the next generation of nuclear professionals and to keep early career and seasoned experts at the top of their game. The event will be the second of its kind held by ANS.

Register now to participate in this event, which is free for ANS members.

Diablo Canyon report takeaways: California has options, and it’s time for debate

November 10, 2021, 12:02PMNuclear News

A new study by researchers from Stanford University and the Massachusetts Institute of Technology—An Assessment of the Diablo Canyon Nuclear Plant for Zero-Carbon Electricity, Desalination, and Hydrogen Production—makes a compelling case that the 2018 decision to shut down California’s only operating nuclear power plants needs another look—and that revenue options could make reversing the decision not just feasible but economically attractive.

“Fast-forward three years and things have changed,” said Jacopo Buongiorno, a professor of nuclear science and engineering at MIT and one of the authors of the report, during a November 8 webinar. Since the decision was made to shut down Diablo Canyon’s twin pressurized water reactors in 2024 and 2025 when their current licenses expire, the state has passed bills calling for net zero carbon emissions by 2045 and for restrictions on land use that could effectively limit solar installation sprawl. Californian’s have also experienced repeated grid reliability issues and prolonged drought conditions.

Heralding a fusion breakthrough and “a new era” for energy

September 13, 2021, 3:00PMANS Nuclear Cafe

Paul Dabbar, former undersecretary for science at the Department of Energy and distinguished visiting fellow at Columbia University’s Center on Global Energy Policy, is lauding the recent successful test of a 10-ton high-temperature superconducting magnet performed by researchers at the Massachusetts Institute of Technology and Commonwealth Fusion Systems. In an op-ed published on September 10 in The Hill, Dabbar calls for a new level of investment and support for the commercial fusion sector.

MIT ramps 10-ton magnet up to 20 tesla in proof of concept for commercial fusion

September 10, 2021, 11:59AMNuclear News
This large-bore, full-scale high-temperature superconducting magnet designed and built by Commonwealth Fusion Systems and MIT’s Plasma Science and Fusion Center is the strongest fusion magnet in the world. (Photo: Gretchen Ertl, CFS/MIT-PSFC)

A high-temperature superconducting magnet reached and maintained a magnetic field of more than 20 tesla in steady state for about five hours on September 5 at MIT’s Plasma Science and Fusion Center. Not only is the magnet the strongest high-temperature superconducting (HTS) magnet in the world by far, it is also large enough—when assembled in a ring of 17 identical magnets and surrounding structures—to contain a plasma that MIT and Commonwealth Fusion Systems (CFS) hope will produce net energy in a compact tokamak device called SPARC in 2025, on track for commercial fusion energy in the early 2030s.

Water-saving technology developed at MIT could clear the air around nuclear plants

August 9, 2021, 12:14PMNuclear News
The right side of the cooling tower of MIT’s reactor has the new system installed, eliminating its plume of vapor, while the untreated left side continues to produce a steady vapor stream. (Image: MIT/courtesy of the researchers)

The white plumes of steam billowing from the cooling towers of nuclear power plants and other thermal power plants represent an opportunity to some—the opportunity to collect a valued resource, purified water, that is now lost to the atmosphere. A small company called Infinite Cooling is looking to commercialize a technology recently developed at the Massachusetts Institute of Technology by the Varanasi Research Group, whose work is described in an article written by David L. Chandler, of the MIT News Office, and published on August 3.

Radioactive molecules could probe origins of the universe

July 9, 2021, 9:13AMNuclear News

Physicists from the Massachusetts Institute of Technology and other institutions have measured the effect of a single neutron in a molecule of radium monofluoride and hypothesize that radioactive molecules could be used as a tool to explore why there is more matter than antimatter in the universe. The research team’s findings were published in the journal Physical Review Letters on July 7, and on the same day, an article published online by MIT News explained the implications of their work.

MIT team adapts neutron resonance transmission analysis for portability

June 23, 2021, 7:07AMNuclear News
Left: An experimental setup showing a shielded detector. Right: A DT neutron source showing three disks of 6Li doped glass scintillator mounted on a photomultiplier tube. (Photos: MIT)

Neutron resonance transmission analysis (NRTA) was developed by researchers at Los Alamos National Laboratory to identify unknown materials inside a sealed object using a beam of neutrons from a laboratory-scale apparatus. Recognizing that the potential nuclear security applications of NRTA were limited by the size and location of the apparatus, Areg Danagoulian, an associate professor in the Massachusetts Institute of Technology’s Department of Nuclear Science and Engineering, began about five years ago to consider how NRTA could be made portable to examine materials on location.

Game-playing AI technique may lead to cheaper nuclear energy

January 4, 2021, 7:00AMANS Nuclear Cafe

In this AI-designed layout for a boiling water reactor, fuel rods are ideally positioned around two fixed water rods to burn more efficiently. MIT researchers ran the equivalent of 36,000 simulations to find the optimal configurations. Colors correspond to varying amounts of uranium and gadolinium oxide in each rod. Image: Majdi Radaideh/MIT

Researchers at the Massachusetts Institute of Technology and Exelon show that by turning the nuclear fuel assembly design process into a game, an artificial intelligence system can be trained to generate dozens of optimal configurations that can make each fuel rod last about 5 percent longer, saving a typical power plant an estimated $3 million a year, the researchers report.

The AI system can also find optimal solutions faster than a human and can quickly modify designs in a safe, simulated environment. The results appear in the journal Nuclear Engineering and Design.

ARC-20 cost-share funds go to ARC Nuclear, General Atomics, and MIT

December 23, 2020, 7:00AMNuclear News

Designs chosen for ARC-20 support could be commercialized in the mid-2030s. Graphic: DOE

The Department of Energy’s Office of Nuclear Energy (DOE-NE) has named the recipients of $20 million in Fiscal Year 2020 awards for Advanced Reactor Concepts–20 (ARC-20), the third of three programs under its Advanced Reactor Demonstration Program (ARDP). The three selected teams—from Advanced Reactor Concepts LLC, General Atomics, and the Massachusetts Institute of Technology—will share the allocated FY20 funding for ARC-20 and bring the total number of projects funded through ARDP to 10. DOE-NE announced the news on December 22.

The DOE expects to invest a total of about $56 million in ARC-20 over four years, with industry partners providing at least 20 percent in matching funds. The ARDP funding opportunity announcement, issued in May 2020, included ARC-20 awards, Advanced Reactor Demonstration awards, and Risk Reduction for Future Demonstration awards.

Is proximity key to understanding interactions on the nuclear scale?

November 13, 2020, 6:51AMANS Nuclear Cafe

An MIT-led team found that the formulas describing how atoms behave in a gas can be generalized to predict how protons and neutrons interact at close range. Image: Collage by MIT News. Neutron star image: X-ray (NASA/CXC/ESO/F.Vogt et al); Optical (ESO/VLT/MUSE & NASA/STScI)

In an MIT News article playfully titled “No matter the size of a nuclear party, some protons and neutrons will always pair up and dance,” author Jennifer Chu explains that findings on the interactions of protons and neutrons recently published in the journal Nature Physics show that the nucleons may behave like atoms in a gas.

A Massachusetts Institute of Technology–led team simulated the behavior of nucleons in several types of atomic nuclei using supercomputers at Los Alamos National Laboratory and Argonne National Laboratory. The team investigated a range of nuclear interaction models and found that formulas describing a concept known as contact formalism can be generalized to predict how protons and neutrons interact at close range.

A life in nuclear reactor physics and design

November 3, 2020, 7:00AMANS Nuclear CafeWeston M. Stacey

You may have read the abbreviated version of this article in the November 2020 issue of Nuclear News. Now here's the full article—enjoy!

I have enjoyed a long and stimulating career in applied nuclear physics—specifically nuclear reactor physics, nuclear fusion plasma physics, and nuclear fission and fusion reactor design—which has enabled me to know and interact with many of the scientists and engineers who have brought the field of nuclear energy forward over the past half-century. In this time I have had the fortune to interact with and contribute (directly and indirectly) to the education of many of the people who will carry the field forward over the next half-century.

A closer look at SPARC’s burning plasma ambitions

October 5, 2020, 3:00PMNuclear News

Cutaway of the SPARC engineering design. Image: CFS/MIT-PSFC, CAD rendering by T. Henderson

Seven open-access, peer-reviewed papers on the design of SPARC, Commonwealth Fusion Systems’ (CFS) fusion tokamak, written in collaboration with the Massachusetts Institute of Technology’s Plasma Science and Fusion Center, were published on September 29 in a special edition of the Journal of Plasma Physics.

The papers describe a compact fusion device that will achieve net energy where the plasma generates more fusion power than used to start and sustain the process, which is the requirement for a fusion power plant, according to CFS.

The timeline for this planned device sets it apart from other magnetic confinement fusion tokamaks: Construction is to begin in 2021, with the device coming on line in 2025.

CFS expects the device to achieve a burning plasma—a self-sustaining fusion reaction—and become the world’s first net energy (Q>1) fusion system. The newly released papers reflect more than two years of work by CFS and the Plasma Science and Fusion Center to refine their design. According to CFS, the papers apply the same physics rules and simulations used to design ITER, now under construction in France, and predict, based on results from existing experiments, that SPARC will achieve its goal of Q>2. In fact, the papers describe how, under certain parameters, SPARC could achieve a Q ratio of 10 or more.

JPP lays out SPARC fusion physics basis

September 30, 2020, 9:45AMANS Nuclear Cafe

Cutaway of the SPARC engineering design. Image: CFS/MIT-PSFC, CAD Rendering by T. Henderson

A special issue of the Journal of Plasma Physics gives a glimpse into the physics basis for SPARC, the DT-burning tokamak being designed by a team from the Massachusetts Institute of Technology and Commonwealth Fusion Systems. The special issue was announced in a September 29 post on the Cambridge University Press blog Cambridge Core.

The special JPP issue includes seven peer-reviewed articles on the SPARC concept, which takes advantage of recent breakthroughs in high-temperature superconductor technology to burn plasma in a compact tokamak design.

Metal frameworks could capture krypton-85 during reprocessing

August 4, 2020, 9:51AMAround the Web

Separation of Kr-85 from spent nuclear fuel by a highly selective metal organic framework. Image: Mike Gipple/National Energy Technology Laboratory

According to a story published by the Massachusetts Institute of Technology on July 24, the capture of gaseous fission products such as krypton-85 during the reprocessing of spent nuclear fuel could be aided by the adsorption of gasses into an advanced type of soft crystalline material, metal organic frameworks(MOF), which feature high porosity and large internal surface areas that can trap an array of organic and inorganic compounds.

Web workshop: Separating nuclear reactors from the power block with heat storage

July 27, 2020, 3:06PMANS News

A three-part free webinar workshop, Separating Nuclear Reactors from the Power Block with Heat Storage: A New Power Plant Design Paradigm, will run for three upcoming Wednesdays, starting this week on July 29. The workshop is being hosted jointly by the Massachusetts Institute of Technology (MIT), Idaho National Laboratory (INL), and the Electric Power Research Institute (EPRI).