X-rays size up protein structure at the “heart” of COVID-19 virus

Overlapping X-ray data of the SARS-CoV-2 main protease shows structural differences between the protein at room temperature (orange) and the cryogenically frozen structure (white). Graphic: Jill Hemman/ORNL, U.S. Dept. of Energy

A team of researchers at the Department of Energy’s Oak Ridge and Argonne national laboratories has performed the first room-temperature X-ray measurements on the SARS-CoV-2 main protease, the enzyme that enables the virus to reproduce.

The X-ray measurements mark an important first step in the researchers’ ultimate goal of building a comprehensive 3D model of the enzymatic protein.

General Chair’s Special Session: Advanced reactors in uncertain times

The final plenary session of the American Nuclear Society's 2020 Virtual Annual Meeting was the General Chair’s Special Session, held on Wednesday, June 10. The session contained much information about the current and future role of advanced reactor technology. The session, with the subtitle “The Promise of Advanced Reactors during Uncertain Times: National Security, Jobs and Clean Energy,” featured two panels: the Lab Directors Roundtable and the Advanced Reactor Panel. The general chair is Mark Peters, Idaho National Laboratory director. The session was moderated by Corey McDaniel, of Idaho National Laboratory, and the assistant general chair of the Annual Meeting.

A few of the issues covered during the dual plenary session included challenges to advanced reactor deployment, public-private partnerships in research and development, nuclear non-proliferation and security, workforce issues, and market conditions and demand.

ITER reaches major construction milestone

The 1,250-ton cryostat base is positioned over the ITER tokamak pit for installation. The base is the heaviest lift of the tokamak assembly. Photo: ITER

ITER, the world’s largest international scientific collaboration, is beginning the assembly of the fusion reactor tokamak that will include 12 essential hardware systems provided by US ITER, which is managed by Oak Ridge National Laboratory. The first major machine element to be installed is the 1,250-ton base of the cryostat, which was placed into the tokamak assembly pit on May 26. ITER is located in southeastern France.

Oak Ridge developing 3D-printed nuclear reactor core

3D-printed components for the prototype reactor. Photo: Britanny Cramer/ORNL/U.S. Department of Energy

A 3D-printed nuclear reactor core prototype being developed at Oak Ridge National Laboratory is a step toward reaching the goal of creating an advanced, full-sized, 3D-printed reactor by 2023 at the lab.