Nuclear News on the Newswire

Nuclear fuel considerations in the development of advanced reactors

Mignogna

The world faces an urgent need to decarbonize and expand clean energy systems. Earlier this year, the United States announced goals to achieve a 100 percent clean electricity grid by 2035 and net-zero emissions across the entire economy by 2050. Today, nuclear energy plants provide more than 50 percent of the United States’ carbon-free energy. Existing plants, along with the advanced technologies currently being developed and demonstrated, are crucial to the United States’ and the world’s clean energy future.

Technologies such as advanced non-light water reactors, which have higher operating temperatures than today’s light water reactors, will be vital to meeting economy-wide decarbonization goals. For example, process heat applications and chemical and synthetic fuel production require higher temperatures and currently rely on fossil fuels. Advanced reactors are the only carbon-free technologies that can provide the high temperatures these processes need.

Go to Article

Maximizing decommissioning lessons learned

Larry W. Camper

The track record for the successful decommissioning of nuclear facilities, both nationally and internationally, is impressive. In the United States, we have decommissioned many nuclear facilities, including complex materials sites, uranium recovery sites, research and test reactors, and nuclear power plants. To date, according to the Nuclear Regulatory Commission, 10 nuclear power plants have been completely decommissioned for unrestricted use, and another 26 power reactor sites are currently undergoing decommissioning through either SAFSTOR or DECON, following NRC regulatory requirements. In addition, the Nuclear Energy Institute identifies three nuclear power plants that were successfully decommissioned outside of NRC jurisdiction. While such a track record is impressive, the nuclear industry must be vigilant in focusing on lessons learned in order to continue to make gains in efficiency, cost savings, improved environmental stewardship, and enhanced stakeholder confidence. In reviewing the outcomes of decommissioning over many years, a number of key lessons learned have emerged.

Go to Article

HTGR locked in for U.K. demonstration project

Hands

The U.K. government has confirmed its selection of the high-temperature gas-cooled reactor (HTGR) for Britain’s £170 million (about $236 million) Advanced Modular Reactor Demonstration Program.

Greg Hands, minister for energy, clean growth, and climate change, delivered the news on December 2 via a speech at the Nuclear Industry Association’s annual conference. “Following evaluation of responses received,” Hands said, “I’m pleased to announce today that we will focus on HTGRs as the technology choice for the program moving forward—with the ambition for this to lead to a demonstration by the early 2030s.”

NNL approved: “As we look to the future and the part we play as a scientific superpower, the U.K.’s unparalleled experience in gas-cooled technologies makes HTGRs the common-sense choice for pursuing advanced nuclear,” said Paul Howarth, chief executive officer at the United Kingdom’s National Nuclear Laboratory. “Following announcements already made on financing for the next stage of the Rolls-Royce SMR program and the proposed Nuclear Energy (Financing) Bill to make large-scale plants more achievable, the U.K. is primed once more to be a global leader in nuclear technologies—large, small, and advanced.”

Go to Article

NNSA issues Mo-99 cooperative agreement to Niowave

The Department of Energy’s National Nuclear Security Administration has issued a cooperative agreement worth $13 million to Niowave, of Lansing, Mich., to support the commercial production of molybdenum-99, a critical isotope used in more than 40,000 medical procedures in the United States each day, including the diagnosis of heart disease and cancer.

Go to Article

From the pages of Nuclear News: Industry update

NuScale Power has signed a memorandum of understanding with Prodigy Clean Energy and Kinectrics to explore and inform the development of a regulatory framework to address the licensing and deployment of a marine power station (MPS). The MPS would integrate one to 12 NuScale power modules into a marine-based nuclear power plant system. The MPS would be shipyard-fabricated and marine-transported to its deployment location, where it would be moored in place in sheltered and protected waters at the shoreline. Prodigy is Canada’s first commercial marine nuclear power developer, specializing in integrating existing power reactors into stationary-deployed marine power plant structures. Kinectrics provides life-cycle management services to the electricity industry.

Go to Article

DOE seeks stakeholder input on energy supply chains

The Department of Energy issued a request for information (RFI) last week in response to President Biden’s February 24 executive order directing it to submit a report on supply chains for the energy sector industrial base within one year.

According to the order, the United States requires supply chains that are “resilient,” meaning “secure and diverse—facilitating greater domestic production, a range of supply, built-in redundancies, adequate stockpiles, safe and secure digital networks, and a world-class American manufacturing base and workforce.”

Go to Article

Hydrogen: The best shot for nuclear sustainability?

Nuclear power plants are not quick to change. So when four utilities announce they will make room for shiny new electrolyzers and consider tweaking their business model, that’s news.

Nuclear power plants can leverage the energy stored in some of the world’s heaviest elements to generate the lightest: hydrogen. That is not news, but it casts an aura of alchemy over straightforward engineering. Amid the hype, and the hope of significant federal funding, it’s worth acknowledging that hydrogen has an industrial history over 100 years old. In the potential matchup of hydrogen and nuclear power, it’s nuclear that would be the newcomer.

Go to Article

First Hunterston reactor shuttered

Unit B1 at Scotland’s two-unit Hunterston B nuclear power plant was taken off line for good on November 26 after nearly 46 years of operation. A 490-MWe advanced gas-cooled reactor, the unit entered commercial operation in June 1976. Its companion AGR, Unit B2, which entered operation in March 1977, is scheduled for retirement in January.

Go to Article