DOE steps up plutonium production for future space exploration

This high-resolution still image is from a video taken by several cameras as NASA’s Perseverance rover touched down on Mars on February 18. Credits: NASA/JPL-Caltech

NASA’s Perseverance rover, which successfully landed on Mars on February 18, is powered in part by the first plutonium produced at Department of Energy laboratories in more than 30 years. The radioactive decay of Pu-238 provides heat to radioisotope thermoelectric generators (RTGs) like the one onboard Perseverance and would also be used by the Dynamic Radioisotope Power System, currently under development, which is expected to provide three times the power of RTGs.

Idaho National Laboratory is scaling up the production of Pu-238 to help meet NASA’s production goal of 1.5 kg per year by 2026, the DOE announced on February 17.

NASA’s radioisotope-powered science will persevere on Mars

Members of the Perseverance rover team in Mission Control at NASA’s Jet Propulsion Laboratory react after receiving confirmation of a successful landing. Photo: NASA/Bill Ingalls

NASA mission control and space science fans around the world celebrated the safe landing of the Mars 2020 Perseverance rover on February 18 after a journey of 203 days and 293 million miles. Landing on Mars is difficult—only about 50 percent of all previous Mars landing attempts have succeeded—and a successful landing for Perseverance, the fifth rover that NASA has sent to Mars, was not assured. Confirmation of the successful touchdown was announced at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., at 3:55 p.m. EST.

“This landing is one of those pivotal moments for NASA, the United States, and space exploration globally—when we know we are on the cusp of discovery and sharpening our pencils, so to speak, to rewrite the textbooks,” said acting NASA administrator Steve Jurczyk. “The Mars 2020 Perseverance mission embodies our nation’s spirit of persevering even in the most challenging of situations, inspiring, and advancing science and exploration. The mission itself personifies the human ideal of persevering toward the future and will help us prepare for human exploration of the Red Planet.”

Only radioisotope thermoelectric generators (RTG) can provide the long-lasting, compact power source that Perseverance needs to carry out its long-term exploratory mission. Perseverance carries an RTG powered by the radioactive decay of plutonium-238 that was supplied by the Department of Energy. ANS president Mary Lou Dunzik-Gougar and CEO and executive director Craig Piercy congratulated NASA after the successful landing, acknowledging the critical contributions of the DOE’s Idaho National Laboratory, Oak Ridge National Laboratory, and Los Alamos National Laboratory.

Why Nuclear is an Emerging Technology for the Space Economy

Nuclear energy has played a key supporting role in historic missions to Mars, Pluto, and across the Solar System for the last 50 years. On January 1 2019, the nuclear-powered New Horizons flew by the most distant object ever observed up close - Ultima Thule, after it having already flown by Pluto in 2015.

The Cassini-Huygens Mission to Saturn

Cassini-Huygens is a Flagship-class NASA-ESA-ASI robotic spacecraft sent to the Saturn system. It has studied the planet and its many natural satellites since its arrival there in 2004, as well as observing Jupiter and the Heliosphere, and testing the theory of relativity. Launched in 1997 after nearly two decades of gestation, it includes a Saturn orbiter Cassini and an atmospheric probe/lander Huygens that landed in 2005 on the moon Titan. Cassini is the fourth space probe to visit Saturn and the first to enter orbit, and its mission is ongoing as of 2013.  It is powered by a plutonium power source, and has facilitated many landmark scientific discoveries in its mission to the stars.