MIT and Commonwealth Fusion Systems agree to five-year SPARC collaboration

May 16, 2022, 7:01AMNuclear News
PSFC director Dennis Whyte (left) and CFS chief executive officer Bob Mumgaard in the test hall at MIT’s Plasma Science and Fusion Center. (Photo: Gretchen Ertl, CFS/MIT-PSFC)

The Massachusetts Institute of Technology’s Plasma Science and Fusion Center (PSFC) recently announced it will expand its involvement in fusion energy research and education under a new five-year agreement with Commonwealth Fusion Systems (CFS), a fusion energy company that got its start at MIT and is now building what it says will be the world’s first net-energy fusion machine—the demo-scale SPARC.

“CFS will build SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education,” said PSFC director Dennis Whyte in describing the collaboration.

A closer look at SPARC’s burning plasma ambitions

October 5, 2020, 3:00PMNuclear News

Cutaway of the SPARC engineering design. Image: CFS/MIT-PSFC, CAD rendering by T. Henderson

Seven open-access, peer-reviewed papers on the design of SPARC, Commonwealth Fusion Systems’ (CFS) fusion tokamak, written in collaboration with the Massachusetts Institute of Technology’s Plasma Science and Fusion Center, were published on September 29 in a special edition of the Journal of Plasma Physics.

The papers describe a compact fusion device that will achieve net energy where the plasma generates more fusion power than used to start and sustain the process, which is the requirement for a fusion power plant, according to CFS.

The timeline for this planned device sets it apart from other magnetic confinement fusion tokamaks: Construction is to begin in 2021, with the device coming on line in 2025.

CFS expects the device to achieve a burning plasma—a self-sustaining fusion reaction—and become the world’s first net energy (Q>1) fusion system. The newly released papers reflect more than two years of work by CFS and the Plasma Science and Fusion Center to refine their design. According to CFS, the papers apply the same physics rules and simulations used to design ITER, now under construction in France, and predict, based on results from existing experiments, that SPARC will achieve its goal of Q>2. In fact, the papers describe how, under certain parameters, SPARC could achieve a Q ratio of 10 or more.

JPP lays out SPARC fusion physics basis

September 30, 2020, 9:45AMANS Nuclear Cafe

Cutaway of the SPARC engineering design. Image: CFS/MIT-PSFC, CAD Rendering by T. Henderson

A special issue of the Journal of Plasma Physics gives a glimpse into the physics basis for SPARC, the DT-burning tokamak being designed by a team from the Massachusetts Institute of Technology and Commonwealth Fusion Systems. The special issue was announced in a September 29 post on the Cambridge University Press blog Cambridge Core.

The special JPP issue includes seven peer-reviewed articles on the SPARC concept, which takes advantage of recent breakthroughs in high-temperature superconductor technology to burn plasma in a compact tokamak design.