Technical advisory committee members in front of a full-scale universal nuclear waste canister prototype developed through ARPA-E’s UPWARDS program. (Photos: Deep Isolation)
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Figure 1. inDRUM Demonstration facility at Studsvik for simulated waste (left) and a drum being loaded into the container treatment unit (right)
Studsvik AB has completed construction of the new inDRUM Demonstration Facility outside of Nykoping, Sweden. We can now demonstrate how the inDRUM technology will process a wide range of problematic and legacy wastes through the removal of all liquids, organics and other materials, resulting in a stable and reduced volume product that can be disposed of in a suitable repository.
Fuel debris sample taken from Fukushima-2. (Photo: TEPCO)
Tokyo Electric Power Company has released the results of its initial analysis of a sample of nuclear fuel debris from Unit 2 of Japan’s damaged Fukushima Daiichi nuclear power plant. The sample, which measured around 5mm by 4mm and totaled 0.187 grams, was taken from the floor of the reactor pedestal during a second trial removal of fuel debris conducted in April.
Workers offload nitrogen into the LAW Facility at Hanford’s Waste Treatment and Immobilization Plant. The nitrogen, mixed with other materials, will simulate tank waste as the facility prepares for waste operations later this year. (Photo: DOE)
The Department of Energy’s Office of Environmental Management announced that it has introduced waste simulant chemicals to the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) as part of the cold commissioning testing of the plant’s Low-Activity Waste Facility.
Specialized cylinders stand in a cylinder yard at the Paducah Site. (Photo: DOE)
A milestone has been reached at the Department of Energy’s Paducah Site when work crews successfully fabricated valves from old equipment and installed them on 137 specialized cylinders. This action will enable future work crews to transform depleted uranium hexafluoride (DUF6) stored inside the cylinders into depleted uranium oxide, a stable chemical form suitable for reuse, storage or disposal.
Deep Isolation’s Universal Canister System. (Photo: Deep Isolation)
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
NWMO vice president and chief engineer Chris Boyle addresses vendors at the NWMO’s Discovery and Demonstration Center. (Photo: NWMO)
Canada’s Nuclear Waste Management Organization has selected five companies it is to work with to design and plan the organization’s proposed deep geologic repository for spent nuclear fuel. As the owner of the project, the NWMO will be working with WSP Canada, Peter Kiewit Sons (Kiewit), Hatch Ltd., Thyssen Mining Construction of Canada, and Kinectrics.
NAC International’s Volunteer package. (Image: NAC)
NAC International has announced that it has received certification from the Nuclear Regulatory Commission for its new high-capacity Volunteer packaging system for transporting nonfissile or fissile-exempt radioactive materials.
Hanford workers move a 330-gallon double-wall transport container of treated tank waste. (Photo: DOE)
As part of its Test Bed Initiative (TBI) demonstration project, the Department of Energy’s Office of Environmental Management completed two shipments of treated, low-activity tank waste from the Hanford Site near Richland, Wash. The approximately 2,000 gallons of TBI waste will be solidified in grout and permanently disposed of at Waste Control Specialists’ (WCS) federal disposal facility in Andrews County, Texas, and at EnergySolutions’ disposal facility in Clive, Utah.
A 1960s Electrolux vacuum cleaner was discovered in Sellafield’s Pile Fuel Cladding Silo. (Photo: Sellafield Ltd.)
A 1960s Electrolux vacuum cleaner was among the more unusual items workers removed from one of the world’s oldest nuclear waste stores at the United Kingdom’s Sellafield nuclear site.
INL’s Hot Fuel Examination Facility. (Photo: INL)
An agreement signed by the state of Idaho and the U.S. Department of Energy will open the way for a single cask of high-burnup spent nuclear fuel to be shipped from Dominion Energy’s North Anna nuclear power plant in Virgina to Idaho National Laboratory for research purposes.
Workers with UCOR perform sampling and deactivation tasks in the basement of Beta-1 at the Y-12 National Security Complex at Oak Ridge. (Photo: DOE)
The Department of Energy’s Office of Environmental Management said that crews with the Oak Ridge Office of Environmental Management (OREM) and its cleanup contractor UCOR are preparing to demolish another deteriorating Manhattan Project–era building at the Y-12 National Security Complex at Oak Ridge, Tenn.
Fig. 1. The systems that make up the IWMS and their interdependencies.
Nuclear energy produces about 9 percent of the world’s electricity and 19 percent of the electricity in the United States, which has 94 operating commercial nuclear reactors with a capacity of just under 97 gigawatts-electric. Each reactor replaces a portion of its nuclear fuel every 18 to 24 months. Once removed from the reactor, this spent (or used) nuclear fuel (SNF or UNF) is stored in a spent fuel pool (SFP) for a few years then transferred to dry storage.
An ICP worker supervises an evaluation of ultrasonic testing technology recently at the INL Site’s Advanced Mixed Waste Treatment Project. (Photo: DOE)
New ultrasonic testing equipment being used by the Department of Energy’s Idaho Cleanup Project (ICP) to confirm the integrity of thousands of legacy waste drums is saving taxpayers tens of millions of dollars, the DOE’s Office of Environmental Management announced.
The technology allows ICP personnel to inspect the thickness transuranic waste drums held in storage at the DOE’s Idaho National Laboratory Site, ensuring they meet Department of Transportation minimum thickness requirements to be shipped for disposal at the Waste Isolation Pilot Plant in New Mexico. According to DOE-EM, if drums meet the DOT thickness requirements, they can be loaded directly into shipping casks without the need for an expensive overpack container, leading to a minimum cost savings of $26 million.