Hot U market and simmering interest in HALEU: It boils down to demand

September 22, 2021, 3:00PMNuclear News
(Click photo to enlarge) One of 16 AC100M gas centrifuges built by Centrus Energy for HALEU production in Piketon, Ohio. (Photo: Centrus Energy)

For years, pressure has been building for a commercial path to a stable supply of high-assay low-enriched uranium (HALEU)—deemed essential for the deployment of advanced power reactors—but advanced reactor developers and enrichment companies are still watching and waiting. In contrast, the uranium spot price soared after Sprott Physical Uranium Trust, a Canadian investment fund formed in July, began buying up U3O8 supplies, causing the price to increase over 60 percent, topping $50 per pound for the first time since 2012. Fueled by growing acknowledgment that nuclear power is a necessary part of a clean energy future, uranium is the focus of attention from Wall Street to Capitol Hill.

Biden administration’s proposed FY 2022 budget supports nuclear

June 3, 2021, 3:02PMNuclear News

The Biden administration’s fiscal year 2022 budget sent to Congress last week would, according to the Department of Energy, move the United States toward net-zero carbon emissions by 2050. The FY 2022 budget request includes $1.85 billion for the DOE’s Office of Nuclear Energy.

“President Biden’s budget request puts America in the driver's seat as we transition toward a 100 percent clean energy economy,” said secretary of energy Jennifer Granholm on May 28. “These investments will ensure the U.S. is the global leader in research, development, and deployment of critical energy technologies to combat the climate crisis, create good-paying union jobs, and strengthen our communities in all pockets of America.”

TerraPower’s Natrium demo is headed to Wyoming

June 3, 2021, 12:03PMNuclear News
A future TerraPower plant visualization. (Graphic: TerraPower)

TerraPower has a design for a sodium-cooled fast reactor and federal cost-shared demonstration funding from the Department of Energy. Its partner, PacifiCorp, has four operating coal-fired power plants in the state of Wyoming. On June 2, together with Wyoming Gov. Mark Gordon and others, the companies announced plans to site a Natrium reactor demonstration project at a retiring coal plant in Wyoming, with a specific site to be announced by the end of 2021.

Advanced reactor economics and markets

May 21, 2021, 2:41PMNuclear NewsCharles Forsberg and Eric Ingersoll
TerraPower and GE Hitachi Nuclear Energy jointly developed the sodium-cooled Natrium reactor with the turbine hall, nitrate heat storage tanks, and cooling towers separated from the reactor at the back of the site.

The viability of nuclear power ultimately depends on economics. Safety is a requirement, but it does not determine whether a reactor will be deployed. The most economical reactor maximizes revenue while minimizing costs. The lowest-cost reactor is not necessarily the most economical reactor. Different markets impose different requirements on reactors. If the capital cost of Reactor A is 50 percent more than Reactor B but has characteristics that double the revenue, the most economical reactor is Reactor A.

The most important factor is an efficient supply chain, including on-site construction practices. This is the basis for the low capital cost of light water reactors from China and South Korea. The design of the reactor can significantly affect capital cost through its impact on the supply chain. The question is, how can advanced reactors boost revenue and reduce costs?

The Natrium technology: Providing reliable, carbon-free energy to complement wind and solar

April 6, 2021, 7:00AMANS Nuclear Cafe
An artist’s rendering of Natrium. Image: TerraPower

Around the world, national and local policymakers and business leaders are making bold and ambitious commitments to clean energy goals. In the United States, one in three Americans now lives in a city or state that has committed to or has achieved 100 percent clean electricity, according to the Luskin Center for Innovation at the University of California–Los Angeles.

Road to advanced nuclear: How DOE and industry collaborations are paving the way for advanced nuclear reactors

April 2, 2021, 8:58AMNuclear NewsCory Hatch

As electric utilities rush to reduce carbon emissions by investing in intermittent renewables such as wind and solar, they often rely heavily on fossil fuels to provide steady baseload power.

More than 60 percent of the nation’s electricity is still generated with fossil fuels, especially coal-fired and gas-fired power plants that have the ability to quickly ramp up or ramp down power to follow loads on the electric grid. Most experts agree that even with a radical advancement in energy storage technology, relying exclusively on wind and solar to replace fossil fuels won’t be enough to maintain a stable electric grid and avoid the major impacts of climate change.

To complete the transition to a carbon-free energy future, one key piece of the puzzle remains: nuclear power.

Partnership supports siting Xe-100 demo in Washington state

April 1, 2021, 3:00PMNuclear News
U.S. Rep. Dan Newhouse (R., Wash.) observes as (from left) Energy Northwest CEO Brad Sawatzke, X-energy CEO Clay Sell, and Grant PUD CEO Kevin Nordt sign the TRi Energy Partnership MOU on April 1 at the Port of Benton in Richland, Wash. Photo: Energy Northwest

Building the nation’s first advanced reactor is the goal of a partnership formed between X-energy, Energy Northwest, and the Grant County (Washington) Public Utility District (PUD).

The TRi Energy Partnership will support the development and demonstration of X-energy’s Xe-100 high-temperature gas reactor, which was selected by the Department of Energy for a cost-shared commercial demonstration by 2027 through the DOE’s Advanced Reactor Demonstration Program (ARDP). The new partnership was announced on April 1, when Clay Sell, X-energy’s chief executive officer; Brad Sawatzke, Energy Northwest’s CEO; and Kevin Nordt, the Grant County PUD’s CEO, met in Richland, Wash., to sign a memorandum of understanding.

NCSU to host SMR technical library with support from endowment

April 1, 2021, 9:32AMNuclear News

The North Carolina State University (NCSU) Libraries Department and the Department of Nuclear Engineering are collaborating to build a small modular reactor technical library at NCSU. The library resources will be available to the NCSU research community and to TerraPower/GE Hitachi and X-energy, both of which have signed teaming agreements with NCSU researchers to support planned advanced reactor demonstrations within the next seven years.

Making the new library collection possible: a generous donation from NCSU alumnus Stephen Rea, who together with his wife, Phyllis, formed the Stephen and Phyllis Rea Endowment for Mechanical Engineering Collections in 2015.

“We wanted to seed the endowment and grow it through donations to pursue research and development of green advanced power generation technologies,” Rea explained. “Supporting the advancement of SMR technology development fits our mission statement perfectly.”

NC State celebrates 70 years of nuclear engineering education

March 29, 2021, 3:00PMANS News
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University

The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.

The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.

U.S. nuclear in spotlight at Senate hearing

March 26, 2021, 9:32AMNuclear News
Sen Joe Manchin gives his opening statement at the March 25 hearing.

The Senate Energy and Natural Resources Committee yesterday held a hearing to examine the latest developments in the U.S. nuclear energy sector, with a focus on ways to maintain and expand the use of nuclear in the United States and abroad.

Testifying before the committee were Jeffrey Lyash, president and chief executive officer of the Tennessee Valley Authority (TVA); Chris Levesque, president and CEO of TerraPower, Scott Melbye, president of Uranium Producers of America (UPA); Amy Roma, founding member of the Atlantic Council’s Nuclear Energy and National Security Coalition and a partner with the law firm Hogan Lovells; and J. Clay Sell, CEO of X-energy.

Senate hearing to focus on nuclear energy

March 24, 2021, 3:00PMANS Nuclear Cafe

The U.S. Senate Energy and Natural Resources Committee (ENR) will hold a hearing on Thursday, March 25, to examine the latest developments in the nuclear energy sector, with a focus on ways to maintain and expand the use of nuclear energy in the United States and abroad.

The hearing can be viewed live at 9:45 a.m. EST. More information about the hearing is available online.

Gates highlights nuclear’s role in fighting climate change

February 19, 2021, 9:29AMANS Nuclear Cafe

Gates

Bill Gates is making the media rounds to promote his new book, How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need, which was released on Tuesday. Along the way, he’s been touting nuclear energy as part of his master plan for battling climate change.

60 Minutes: Gates kicked off the week with an appearance on 60 Minutes on Sunday. During the nearly 15-minute segment with correspondent Anderson Cooper, Gates discussed TerraPower, the company he founded in 2006 that is dedicated to nuclear innovation. “Nuclear power can be done in a way that none of those failures of the past would recur, because just the physics of how it's built,” Gates said, referring to TerraPower’s Natrium reactor. “I admit, convincing people of that will be almost as hard as actually building it. But since it may be necessary to avoid climate change, we shouldn't give up.”

PRA standard for Advanced Non-Light Water Reactors just issued

February 9, 2021, 7:03AMNuclear News

ANSI/ASME/ANS RA-S-1.4-2021, “Probabilistic Risk Assessment Standard for Advanced Non-Light Water Reactor Nuclear Power Plants,” has just been issued. Approved by the American National Standards Institute (ANSI) on January 28, 2021, this joint American Society of Mechanical Engineers (ASME)/American Nuclear Society (ANS) standard sets forth requirements for probabilistic risk assessments (PRAs) used to support risk-informed decisions for commercial nuclear power plants and prescribes a method for applying these requirements for specific applications.

ANSI/ANS-RA-S-1.4-2021 and its preview are available in the ANS Standards Store.

DOE tags INL as “preferred alternative” to host the Versatile Test Reactor

November 19, 2020, 3:16PMNuclear News

Rendering of the proposed Versatile Test Reactor. Image: Idaho National Laboratory

The Department of Energy won’t publish its draft environmental impact statement (EIS) for the Versatile Test Reactor (VTR) until mid-December. In a November 19 announcement on Twitter, however, the DOE’s Office of Nuclear Energy said that the yet-to-be-released EIS lists Idaho National Laboratory as the preferred alternative to site the VTR.

The DOE plans to submit the draft EIS for public comments early next month. The DOE won’t make a final decision on the design, technology selection, and location for the VTR until the completion of the EIS and record of decision in late 2021.

Core Power thinks nuclear will make waves in commercial shipping

November 5, 2020, 9:40AMNuclear News

Illustration of Core Power’s modular MSR concept. Image: Core Power

Core Power is a tiny startup that is bullish on the prospects for nuclear-powered ocean transportation. The company announced on November 2 that it is part of a team that has applied for a cost-shared award from the Department of Energy’s Advanced Reactor Demonstration Program (ARDP) to build a prototype molten salt reactor (MSR). Core Power believes that MSRs could be used for propulsion or electricity generation to decarbonize the world’s commercial shipping fleet.

Based in London, England, Core Power is the only non-U.S. member of the team, which includes TerraPower, Southern Company, and Orano USA. As a marine engineering firm, Core Power says that it offers its ARDP partners “access to pent-up demand from a market with real customers.” An announcement of ARDP “risk reduction for future demonstrations” award winners is expected in December.

Versatility, leadership, and “the highest fast neutron flux in the history of ever”: Highlights from INL’s VTR webinar

November 2, 2020, 12:04PMNuclear News

Clockwise from top left are Craig Piercy, Ray Furstenau, Tom O’Connor, Sean McDeavitt, Tara Neider, and Judi Greenwald.

The Versatile Test Reactor’s conceptual design was approved in September, and a draft environmental impact statement could be released within the week. The completion of more project milestones leading to operation in 2026, however, will depend on congressional appropriations. An expert panel described the need for a state-of-the-art test reactor and the value that the VTR could bring to the U.S. nuclear R&D community over its 60-year lifetime during a recent webinar—“Advanced U.S. Nuclear Research and Development: A Briefing and Discussion on the VTR”—hosted by Idaho National Laboratory.

Craig Piercy, ANS executive director/CEO, moderated the webinar, introducing a project update from VTR executive director Kemal Pasamehmetoglu and facilitating a Q&A session with representatives of the Nuclear Regulatory Commission, the Department of Energy, universities, reactor developers, and the Nuclear Innovation Alliance. A recording of the October 29 webinar is available online. INL also has a video and information online on the VTR.

“I think that the VTR represents part of a larger effort to modernize our infrastructure, develop a new set of technologies, and really preserve our global leadership in the field,” said Piercy. Read on to learn more about the promise the VTR holds for the nuclear community.

U-233 processing restarts at Oak Ridge following upgrades

October 22, 2020, 7:01AMNuclear News

A fissile material handler uses a shielded glovebox to dissolve U-233 into a low-level form so that it can be mixed with grout for safe transportation and disposal. Photo: DOE

The processing and downblending of uranium-233 for disposal has resumed at Oak Ridge National Laboratory, following a pause in operations due to the COVID-19 pandemic, the Department of Energy announced on October 20. Removal and disposition of the U-233 is one of the DOE Office of Environmental Management’s highest priorities at the site, as stated in its strategic vision released earlier this year.

The project is removing a significant risk by eliminating the inventory of highly enriched fissile material stored in Building 3019, the world’s oldest operating nuclear facility, according to the DOE. Employees, known as fissile material handlers, use shielded gloveboxes to dissolve U-233 into a low-level form so that it can be mixed with grout for safe transportation and disposal. The material dates back decades and was originally pursued as a fuel for reactors; however, it did not prove to be a viable option.

It’s time for the United States to demonstrate advanced reactors

October 16, 2020, 9:04AMANS Nuclear CafeRita Baranwal

After talking about it for decades, the United States is finally ready to take the next step in demonstrating advanced reactor technologies.

We have the bipartisan support from Congress. We have the best innovators in the world. Now it’s time to see what U.S. nuclear companies can really do with the support and resources of the federal government.

The U.S. Department of Energy is all in on new nuclear technologies and we just made our boldest move yet—selecting and supporting two U.S. reactor designs that will be fully operational within the next 7 years.

After evaluating the competitive U.S. reactor design applications that were submitted to our new Advanced Reactor Demonstration Program funding opportunity announcement, TerraPower LLC and X-energy were awarded $160 million in initial funding to test, license, and build their advanced reactors under this aggressive timeframe. Pending future appropriations by Congress, the DOE will invest $3.2 billion over 7 years in these projects that will be matched by the industry teams.

ARDP picks divergent technologies in Natrium, Xe-100: Is nuclear’s future taking shape?

October 14, 2020, 7:21AMNuclear News

The Department of Energy has put two reactor designs—TerraPower’s Natrium and X-energy’s Xe-100—on a fast track to commercialization, each with an initial $80 million in 50-50 cost-shared funds awarded through the Advanced Reactor Demonstration Program (ARDP). In all, the DOE plans to invest $3.2 billion—with matching funds from industry—over the seven-year demonstration program, subject to future appropriations.

Energy Secretary Dan Brouillette announced the awards late in the day on October 13 in Oak Ridge, Tenn., and said, “These awards are a critical first step of a program that will strengthen our nation’s nuclear energy and technological competitiveness abroad, and position our domestic industry for growth, for increased job creation, and for even more investment opportunity. It’s absolutely vital that we make progress on this technology now.”