Nuclear News on the Newswire

Garrish up for repeat term as DOE’s nuclear energy secretary

Garrish

Theodore “Ted” Garrish—who has spent more than four decades working in nuclear—is President Donald Trump’s nominee to serve as the Department of Energy’s assistant secretary for nuclear energy, or, NE-1.

The nomination was referred to the U.S. Senate’s Committee on Energy and Natural Resources on February 3. Garrish previously held the office from 1987 to 1989 under President Ronald Reagan. Most recently, Kathryn Huff held the NE-1 post, and Michael Goff has served as interim assistant secretary since Huff stepped down in May 2024.

Garrish’s most recent term in public office was as assistant secretary for the Office of International Affairs at the Energy Department, from 2018 to 2021, during Trump’s first term. Supporters say Garrish’s 40-plus years working in the nuclear industry and in nuclear energy oversight positions makes him more than qualified to serve in the DOE office again.

Go to Article

UC San Diego joins General Atomics–led fusion collaborative

The University of California–San Diego has joined a new research collaborative focused on overcoming critical obstacles in developing and scaling up inertial fusion power plants. Led by San Diego-based General Atomics, the group was one of six research teams that were collectively awarded $107 million in January by the Department of Energy as part of the Fusion Innovative Research Engine (FIRE) Collaboratives.

Go to Article

Arizona utilities trio looks to add nuclear power

The top three utilities in Arizona are teaming up to explore opportunities to add nuclear generation facilities in the state.

Arizona Public Service (APS), Salt River Project (SRP), and Tucson Electric Power (TEP) announced in a February 5 news release that they are working together to assess possible sites, including retiring coal plants. The group is looking at possibilities for both small modular reactors—units generating 300 MW or less—and potential large reactor projects, which could generate nearly five times the power.

Go to Article

Why push materials to their breaking point?

Stephen Taller

We push materials to their breaking point for you.

Millions of Americans rely on nuclear energy. It provides 20 percent of electrical power in the United States—24 hours a day, 7 days a week, 365 days a year. To maintain this reliability, every material used in our reactors must work safely and efficiently.

I’m part of a team of world-class scientists, engineers, and technical professionals at Oak Ridge National Laboratory, testing and evaluating materials designed to thrive in one of the most complex environments on Earth. Nuclear reactors experience heavy stress loads, high temperatures, corrosive environments, and intense radiation fields. Combined, these forces can substantially impact the performance of cladding or other structural materials. We want to know where and under what conditions materials may fail to keep a reactor running safely and reliably.

Go to Article

Argonne scientists use AI to detect hidden defects in stainless steel

Imagine you’re constructing a bridge or designing an airplane, and everything appears flawless on the outside. However, microscopic flaws beneath the surface could weaken the entire structure over time.

These hidden defects can be difficult to detect with traditional inspection methods, but a new technology developed by scientists at the U.S. Department of Energy’s Argonne National Laboratory is changing that. Using artificial intelligence and advanced imaging techniques, researchers have developed a method to reveal these tiny flaws before they become critical problems.

Go to Article

Colin Judge: Testing structural materials in Idaho’s newest hot cell facility

Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.

Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.

SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.

Go to Article