Nuclear News on the Newswire

NRC awards R&D grants as part of University Nuclear Leadership Program

The Nuclear Regulatory Commission’s Office of Regulatory Research recently awarded 20 new research and development grants in the University Nuclear Leadership Program (UNLP). The grants, totaling $9,998,188, are derived from the $16 million that Congress appropriated for the program for fiscal year 2022. The 20 selected proposals were among the 89 that were submitted to the NRC and peer-reviewed by the commission staff and experts from academia.

Go to Article

Bids in for new unit at Dukovany

A Westinghouse-Bechtel team, France’s EDF, and Korea Hydro & Nuclear Power have all submitted their initial bids for securing the contract to build a fifth reactor at the Czech Republic’s Dukovany plant, Czech utility ČEZ has announced.

Go to Article

NorthStar completes construction of Mo-99 production facility

NorthStar Medical Radioisotopes has completed construction and all equipment installation at its new facility in Beloit, Wis., to produce the medical radioisotope molybdenum-99 without the use of high-enriched uranium, the Department of Energy’s National Nuclear Security Administration announced last week.

Go to Article

Stress corrosion cracking and welding nonconformities are behind ITER’s fresh delays

The ITER Organization is working on a new baseline schedule for the magnetic confinement fusion experiment launched in 1985 and now under construction in southern France. First plasma was scheduled for December 2025 and deuterium-tritium operations for 2035 under a schedule approved in November 2016 that will soon be shelved. In addition to impacts from COVID-19 delays and uncertainty resulting from Russia’s war in Ukraine, ITER leaders must now factor in repair time for “component challenges.”

Go to Article

Westinghouse, Studsvik to expand capabilities at Springfields site

Westinghouse Electric Company has announced the signing of a long-term technology license agreement with Swedish engineering services firm Studsvik to develop a metals recycling and treatment facility at Westinghouse’s Springfields site.

Located near Preston, Lancashire, in northwestern England, Springfields is the United Kingdom’s only site for nuclear fuel manufacturing, supplying all its advanced gas-cooled reactor fuel. According to Westinghouse, Springfields fuel is responsible for about 32 percent of Britain’s low-carbon electricity generation. In addition, the site exports other nuclear fuel products to customers around the globe.

Go to Article

What about the waste?

Craig Piercy
cpiercy@ans.org

It’s always the first question asked. So, what is your approach? You have options.

You could go the “Yucca Mountain is the law of the land” route. But you’ll soon run into an immutable political truth. Nevada’s early presidential caucuses make it highly unlikely that any candidate would ever take a favorable position on Yucca unless it enjoyed commensurate support in the state. Not convinced? Nevada Gov. Stephen Sisolak signed a bill in August that replaces their closed caucus system with a primary during the first week in February, thereby putting the state in competition with Iowa and New Hampshire to be the “first primary” of the 2024 election. Face it: While you weren’t looking, Nevada secured its consent rights over Yucca Mountain; it’s just written in a different part of the law.

You could also double down on reprocessing/recycling and argue that we need some sort of Manhattan Project. But that requires convincing Congress that it’s a good idea for the government to build large, first-of-a-kind, multibillion-dollar fuel cycle facilities, the economics of which will be based on the estimated price of uranium (or thorium?) some number of decades from now. Good luck with that. As much as a grand solution to the fuel cycle may appeal to our engineering instincts, the funding simply isn’t there—there are no checks left in Washington’s checkbook.

Go to Article

Fusion energy radwaste management considerations

The question of what to do with the radioactive waste has been raised frequently for both fission and fusion. In the 1970s, fusion adopted the land-based disposal option, primarily based on the Nuclear Regulatory Commission’s decision to regulate all radioactive wastes as only a disposal issue, following the fission guidelines. In the early 2000s, members of the Advanced Research Innovation and Evaluation Study (ARIES) national team became increasingly aware of the high amount of mildly radioactive materials that 1-GWe fusion power plants will generate, compared with the current line of fission reactors. The main concern is that such a sizable inventory of mostly tritiated radioactive materials would tend to rapidly fill U.S. repositories—a serious issue that was overlooked in early fusion studies1 that could influence the public acceptability of fusion energy and will certainly become more significant in the immediate future if left unaddressed, as fusion moves toward commercialization.

Go to Article