ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Nuclear science is far-reaching in the fabric of modern life. It can help explain the origins of the universe or how x-rays reveal the bones in your body. In fact, nuclear science is at the heart of so many of the technologies that improve our lives, that it’s easy to take for granted how those technologies came to be. But behind every innovation and discovery in the nuclear fields, is a scientist or engineer researching the atomic nucleus and how to use it to improve our lives.
Scientists used to think there was nothing smaller than an atom.
Today, we know the atom is made of smaller particles, and those are made of even smaller particles.
The nucleus is made of protons and neutrons; each has the same mass: 1 amu (atomic mass unit).
Protons and neutrons aren’t exactly alike, though; protons have a positive charge while neutrons don’t have a charge.
Electrons are so small that they have nearly no mass at all. A single electron has only 1/1836 amu. Electrons are also negatively charged.
All of the known elements are organized on the periodic table of the elements. They are arranged by atomic number, from smallest to largest, and labeled with their element symbol, atomic number, and atomic mass.
To easily communicate information about the elements, scientists use standard nuclear notation.
Nuclear notation is formed by writing an elemental symbol with a number above indicating its atomic number—the number of protons—and a number below indicating its mass number—the number of protons and neutrons combined.
For example: Carbon has 6 protons, so it’s atomic number is 6.
Carbon's mass number is 12. How many neutrons does it have?
The mass number of an element is a round number; the atomic mass usually isn't. Atomic mass is an average mass of all of the isotopes of an element. We use the mass number, which is always a round number, to make calculations easier.
Think about clover. Clovers can have three, four, or even more leaves. The four-leaved clovers are rare, but they are still clovers. In a similar way, two atoms of an element can have different numbers of neutrons. Because they still have the same number of protons, though, they are the same element. These “varieties” of the same element are called isotopes.
Learn more about radioactivity
Last modified June 20, 2022, 9:42am CDT