ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
Nuclear science is far-reaching in the fabric of modern life. It can help explain the origins of the universe or how x-rays reveal the bones in your body. In fact, nuclear science is at the heart of so many of the technologies that improve our lives, that it’s easy to take for granted how those technologies came to be. But behind every innovation and discovery in the nuclear fields, is a scientist or engineer researching the atomic nucleus and how to use it to improve our lives.
Scientists used to think there was nothing smaller than an atom.
Today, we know the atom is made of smaller particles, and those are made of even smaller particles.
The nucleus is made of protons and neutrons; each has the same mass: 1 amu (atomic mass unit).
Protons and neutrons aren’t exactly alike, though; protons have a positive charge while neutrons don’t have a charge.
Electrons are so small that they have nearly no mass at all. A single electron has only 1/1836 amu. Electrons are also negatively charged.
All of the known elements are organized on the periodic table of the elements. They are arranged by atomic number, from smallest to largest, and labeled with their element symbol, atomic number, and atomic mass.
To easily communicate information about the elements, scientists use standard nuclear notation.
Nuclear notation is formed by writing an elemental symbol with a number above indicating its atomic number—the number of protons—and a number below indicating its mass number—the number of protons and neutrons combined.
For example: Carbon has 6 protons, so it’s atomic number is 6.
Carbon's mass number is 12. How many neutrons does it have?
The mass number of an element is a round number; the atomic mass usually isn't. Atomic mass is an average mass of all of the isotopes of an element. We use the mass number, which is always a round number, to make calculations easier.
Think about clover. Clovers can have three, four, or even more leaves. The four-leaved clovers are rare, but they are still clovers. In a similar way, two atoms of an element can have different numbers of neutrons. Because they still have the same number of protons, though, they are the same element. These “varieties” of the same element are called isotopes.
Learn more about radioactivity
Last modified June 20, 2022, 9:42am CDT