ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
S. Sharafat, A. Mills, D. Youchison, R. Nygren, B. Williams, N. Ghoniem
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 559-565
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-15
Articles are hosted by Taylor and Francis Online.
A new class of helium-cooled high heat-flux plasma facing heat exchanger (HX) concept is presented. These unique "Foam-In-Tube" HX concepts are composed of a thin tungsten shell integrally bonded to an open-cell tungsten foam core. High heat flux tests show maximum heat loads of 22.4 MW/m2 using 4 MPa helium at a flow rate of 27 g/s. Based on these impressive performance results, a unique and scalable heat exchanger channel with ultra-low pressure drop through the porous foam is presented. The primary advantage of the new concept is that pressure drop through the porous media and structure temperatures are nearly independent of HX tube length. The concept is modular in design and can be combined to meet divertor size requirements. From a manufacturing and reliability point of view, the advantage of the proposed concept is that it minimizes the need for joining to other functional materials.