Powering space missions
Radioisotopic Thermoelectric Generators (RTGs) have been used in more than 25 space missions, providing power for Voyager 1 and 2, several Apollo missions, Galileo, Nimbus and LES. An RTG will power the next Mars mission: Mars 2020.
RTGs are generators attached to a spacecraft that supply power and heat; they use a plutonium isotope for fuel. As the isotope decays, it gives off heat, which is used to generate electricity through a thermocouple device--a process known as thermoelectric conversion. The decay heat warms one end of the thermocouple, and the cold environment of space cools the other. This produces an electric current that powers the spacecraft. Excess decay heat is also pumped through the spacecraft’s systems to warm up its instruments and subsystems, allowing it to operate in cold environments.
RTGs have enabled major scientific accomplishments including:
- the Cassini spacecraft and Huygens probe’s exploration of Saturn and Titan, one of its moons, since 2004
- the landing of the Curiosity rover on Mars in 2014
- the flyby images of Pluto from the New Horizons mission in 2015
NASA is now working on new RTG technologies capable of generating even more electricity with less fuel.
Instruments and experiments
Nuclear technology in space exploration is not limited to the use of radioactive decay heat for power.
Special instruments are used to detect radiation and determine the composition of distant stars or another planet’s rocks, atmosphere, and soil, among many other things. The data is valuable for experiments taking place back on Earth.
Life on Mars
When we have the ability to colonize distant planets, we’ll need a lot more power than an RTG can generate.
NASA and the Department of Energy’s National Nuclear Security Administration (NNSA) have successfully demonstrated a new nuclear reactor power system that could enable long-duration crewed missions to the Moon, Mars, and destinations beyond.
Known as the Kilopower Reactor Using Stirling Technology (KRUSTY, for short), it is a small, lightweight fission power system capable of providing up to 10 kilowatts of electrical power - enough to run several average households - continuously for at least 10 years. Four Kilopower units would provide enough power to establish an outpost.