Why Nuclear is an Emerging Technology for the Space EconomyANS Nuclear CafeFebruary 6, 2019, 2:42PM|Dr. Christopher MorrisonNuclear energy has played a key supporting role in historic missions to Mars, Pluto, and across the Solar System for the last 50 years. On January 1 2019, the nuclear-powered New Horizons flew by the most distant object ever observed up close - Ultima Thule, after it having already flown by Pluto in 2015.Nuclear energy for space applications is nothing new. The past 50 years have focused on robotic exploration and usually involved providing a few hundred watts for a computer and communication system. However, the next 50 years will involve providing power for human settlements and will require kilowatt and megawatt power systems for life support, propulsion, and industry. While solar is an alternative power source and works well in many locations, nuclear energy is a necessity for locations far from the sun or places like the moon which has long periods of darkness.The most common type of nuclear technology used today is the Radioisotope Thermal Generator (RTG). RTGs use the heat produced by radioactive material (usually Pu-238) decaying into stable state. RTGs are often called nuclear batteries because they can be modularized almost like AA or AAA batteries. RTGs have played a vital role in robotic science missions including the Curiosity Rover, Cassini, and the Voyager probes. Voyager 1 and 2 have left the Solar System and are still communicating with Earth after over 40 years and billions of miles distance. RTGs will continue to play an important role in science missions such as the Mars 2020 Rover.However, RTGs will are not suited to supply the kilowatt- and megawatt-scale power needs of future human spaceflight. There is a second type of nuclear energy called fission that can achieve high power density and can scale to power levels capable of supporting human operations.Nuclear fission requires a "critical mass" of material which means that the reactor needs to be of a certain size before it can generate heat, but once it reaches that critical mass it can produce nearly as much power as desired on demand. Fission power in space is nothing new. In 1965 the SNAP10A space reactor was successfully launched and operated in space. Russia has extensive experience with having launched over 30 fission powered spacecraft. In addition to these space launched systems, there were many ground tests. In the 1960s NASA successfully ground tested over a dozen nuclear rocket engine in a program called NERVA.More recently in spring of 2018 NASA ground tested the "Kilopower" space fission reactor. The reactor core was cast from a Uranium Molybdenum metal alloy and connected to heat pipes and a Stirling engine in a vacuum chamber. The tests showed great performance and it has prepared the way for a flight prototype to be built. Kilopower has been success if not for no other reason than showing that development of nuclear technology can be cost effective. The entire ground test campaign for Kilopower was completed in three years and on a shoestring total budget of around 20 million dollars. NASA has also been supporting nuclear rocket development over the last few years. NASA gave 18.8 million dollar contract to BWXT to design and manufacture prototypes of a new, low-enriched uranium fuel element made from a tungsten uranium dioxide cermet. The current house appropriations bill has allocated "$150,000,000 is for continued development and demonstration of a nuclear thermal propulsion system." with similar language in the senate version. While the bill may change, it can be clearly seen that congress is supportive the development of space nuclear technologies.The Space Renaissance and NuclearIn the Apollo era, the NERVA and SNAP systems were "easy." Nuclear rockets and power systems were being built. However, as a nation we decided not to continue the arc of human exploration on to Mars after Apollo. Fission-power systems for space were shelved until the time that we chose to go to Mars or to establish permanence on the Moon. For the last 50 years there was no serious impetus for human exploration beyond the orbit of Earth and space fission systems were left on the shelf to collect dust. Yet, in the last decade something has changed, there has been a renaissance in the space launch industry.Until recently, putting anything into orbit around the Earth was incredibly expensive. Any object orbiting the Earth was worth its weight in 14 karat gold. For example, the International Space Station is the most expensive single object built in modern human history with a cost of around 100 billion dollars. Space travel was strictly in the realm of government because the cost was so great no person or company could afford it.However, things have changed since the 1960's. The simple fact is that designing, building, and operating complex technology has never been easier. The manufacturing, materials, computer codes are orders of magnitude better than they were in the 1960s. This has dropped the cost of developing space faring capabilities to a level that it is at the fingertips of private companies such as Blue Origin, SpaceX, and even more recently even smaller companies such as Rocket Lab. The commercial space market has been expanding and now is a 380 billion per year industry and on a growth path to be between one and four trillion per year industry by 2040. To put this into perspective, the market for electricity in the U.S. in 2017 was 390 billion. So the "space economy" is now as large as the U.S. energy market and burgeoning.Jeff Bezos (Blue Origin) and Elon Musk (SpaceX) started their companies with the vision of "millions of people living and working in space" in the next few decades. SpaceX with their Falcon family of launch vehicles has dropped the cost of spaceflight by a factor of 15 and the price continuing to drop as the new Falcon Super Heavy are comes online. For nuclear fission power systems, this is game changing. In the past the launch cost was simply too great to achieve the critical mass requirements. However now that barrier has been removed and launching a multiple ton reactor isn't going to break the bank. What held back humanity from pursuing endeavors beyond Earth orbit was cost, and now that barrier has been relaxed and the gateway to space is open.NASA has begun to embrace the innovation of the private sector. Using new milestone-based contracting, the Commercial Orbital Transportation Services (COTS) program has been successfully delivering supplies to the space station using SpaceX and Orbital ATK rockets since 2012. In 2019 SpaceX and Boeing are expected to fly astronauts to the space station for the Commercial Crew Program. This marks the first time American astronauts have flown on American rockets since the end of the Shuttle Program - ending the reliance on the Russian Soyuz rocket. In November 2018, NASA announced the selection of several companies for the Commercial Lunar Payload Services program which contract payloads to the Lunar surface. There is an explosion of new capabilities catalyzed by NASA's new approach, and there is a reasonable expectation of commercial demand for these capabilities. The best analogy for rising space industry is the internet in the late 1980's.The gateway to space is opening, however before we can think about sustainable human presence in space, there critical technologies that are needed to operate beyond the gateway. Nuclear technology is certainly one of the critical technologies. Nuclear fission can rise to meet the needs of commercial and government customers. When humans are ready to live and work in space, nuclear energy must be ready as well. It is time for the SNAP and NERVA technologies to be dusted off and play a role in the future. Michael Griffin, former NASA Director and Undersecretary of the DoD's Research and Development had this to say:"Where we are with space today is, to my mind, analogous to where we were with open ocean voyaging when what we had was wind power...lots of different technologies converged to make sea power a real thing...the no-brainer will be nuclear power and propulsion."The Nuclear and Emerging Technology for Space ConferenceThe Nuclear and Emerging Technologies for Space (NETS 2019) Conference is an annual meeting at the center of the space nuclear sphere. If this topic interests you, I recommend you take a look through the conference website and the program. This year the conference is in Richland, Washington, at the Pacific Northwest National Laboratory's Discover Hall. The conference is open for registration and I encourage all interested parties to join us. You do not need to be an ANS member, but becoming an ANS member saves you registration fee money, plus there are many benefits to becoming a Society member. Keep in mind, if you can't make it in person this year, you can watch portions of the meeting online. There will be a livestream feed of the keynote speakers (including an astronaut) and some of the panels on the ANS Facebook page. Hope to see you there!Dr. Christopher Morrison is an Astro Nuclear Engineer at USNC-Space in Seattle, Washington. His passion for aerospace led him to pursue nuclear energy. He graduated Rensselaer Polytechnic Institute with his Ph.D. in nuclear engineering in 2017. He completed his undergrad at Embry Riddle Aeronautical University in aerospace engineering and computer science in 2012. Chris is a Department of Energy, NEUP-IUP Fellow, Secretary of the Aerospace Division of ANS, and part of the ANS Social Media Team.Feel free to leave a constructive remark or question for the author in the comment section below. Tags:aerospaceamerican nuclear societyastronautsauthorsboeingbwxtcareers in nuclearcuriositydr. christopher morrisoneartheducationelon muskengineeringjeff bezoskilopowernasanervanetsnuclear emerging technology for space conference (nets)public policyradioisotope thermal generatorrtgspace applicationsspacexvoyagerShare:LinkedInTwitterFacebook
NASA’s radioisotope-powered science will persevere on MarsMembers of the Perseverance rover team in Mission Control at NASA’s Jet Propulsion Laboratory react after receiving confirmation of a successful landing. Photo: NASA/Bill IngallsNASA mission control and space science fans around the world celebrated the safe landing of the Mars 2020 Perseverance rover on February 18 after a journey of 203 days and 293 million miles. Landing on Mars is difficult—only about 50 percent of all previous Mars landing attempts have succeeded—and a successful landing for Perseverance, the fifth rover that NASA has sent to Mars, was not assured. Confirmation of the successful touchdown was announced at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., at 3:55 p.m. EST.“This landing is one of those pivotal moments for NASA, the United States, and space exploration globally—when we know we are on the cusp of discovery and sharpening our pencils, so to speak, to rewrite the textbooks,” said acting NASA administrator Steve Jurczyk. “The Mars 2020 Perseverance mission embodies our nation’s spirit of persevering even in the most challenging of situations, inspiring, and advancing science and exploration. The mission itself personifies the human ideal of persevering toward the future and will help us prepare for human exploration of the Red Planet.”Only radioisotope thermoelectric generators (RTG) can provide the long-lasting, compact power source that Perseverance needs to carry out its long-term exploratory mission. Perseverance carries an RTG powered by the radioactive decay of plutonium-238 that was supplied by the Department of Energy. ANS president Mary Lou Dunzik-Gougar and CEO and executive director Craig Piercy congratulated NASA after the successful landing, acknowledging the critical contributions of the DOE’s Idaho National Laboratory, Oak Ridge National Laboratory, and Los Alamos National Laboratory.Go to Article
DOE steps up plutonium production for future space explorationThis high-resolution still image is from a video taken by several cameras as NASA’s Perseverance rover touched down on Mars on February 18. Credits: NASA/JPL-CaltechNASA’s Perseverance rover, which successfully landed on Mars on February 18, is powered in part by the first plutonium produced at Department of Energy laboratories in more than 30 years. The radioactive decay of Pu-238 provides heat to radioisotope thermoelectric generators (RTGs) like the one onboard Perseverance and would also be used by the Dynamic Radioisotope Power System, currently under development, which is expected to provide three times the power of RTGs.Idaho National Laboratory is scaling up the production of Pu-238 to help meet NASA’s production goal of 1.5 kg per year by 2026, the DOE announced on February 17.Go to Article
ORISE reports uptick in nuclear engineering master’s degreesAn increase in the number of master’s degrees awarded in the United States in 2019 pushed the total number of nuclear engineering degrees to its highest level since 2016, according to a study conducted by the Oak Ridge Institute for Science and Education (ORISE) that surveyed 34 U.S. universities with nuclear engineering programs. The report, Nuclear Engineering Enrollments and Degrees Survey, 2019 Data, includes degrees granted between September 1, 2018, and August 31, 2019, as well as enrollments for fall 2019. It was released by ORISE in February.Details: The 316 nuclear engineering master’s degrees awarded in 2019 represented a 21 percent increase over the 2018 total, and a 12 percent increase over the number awarded in 2017. The 194 doctoral degrees awarded in 2019 represented the second-highest level recorded since 1966.Go to Article
Statement on the successful landing of NASA's Perseverance rover on MarsANS congratulates NASA for the successful landing of Perseverance on Mars. We look forward to watching from afar its exploration of the Red Planet and search for past microbial life. This is a proud moment as well for nuclear science and technology as a multi-mission radioisotope thermoelectric generator will be powering the rover to mission success.Go to Article
INL seeks efficiency boost for radioisotope-powered spacecraftThe RTG used to power the Mars Perseverance rover is shown here being placed in a thermal vacuum chamber for testing in a simulated near-space environment. Source: INLThe Department of Energy’s Idaho National Laboratory is celebrating the scheduled landing of the Perseverance rover on the surface of Mars in just two days’ time with a live Q&A today, February 16, from 3 p.m. to 4:30 p.m. EST).INL and Battelle Energy Alliance, its management and operating contractor, are already looking ahead to the next generation of plutonium-powered spacecraft: the Dynamic Radioisotope Power System (Dynamic RPS). INL announced on February 15 that it is partnering with NASA and the DOE to seek industry engagement to further the design of this new power system.Go to Article
Exelon Generation’s workforce development and knowledge transfer strategyStudents display items they received at a STEM workshop sponsored by Exelon. Photo: Exelon. The landscape of Exelon Generation’s nuclear business has continued to evolve—even before the complications of a pandemic—but people will always remain the core focus. Our employees and our future employee pipelines are changing almost as fast as technology, which is why the development of the workforce, both present and future, along with the transfer of knowledge across all departments and levels of the organization, must remain adaptable and advance as well.Go to Article
NASA names ANS member Bhavya Lal as acting chief of staffLalNASA has appointed ANS member Bhavya Lal as the space agency's acting chief of staff. She served as a member of the Biden Presidential Transition Agency Review Team for the agency, NASA said.ANS contribution: Lal cofounded and is cochair of the policy track of the ANS annual conference on Nuclear and Emerging Technologies in Space (NETS). She has contributed as an author and guest editor for the upcoming NETS 2020 special issue of ANS technical journal Nuclear Technology.In addition, she helps organize a seminar series on space history and policy with the Smithsonian National Air and Space Museum.Go to Article
Trump leaves space nuclear policy executive order for Biden teamA hot fire test of the core stage for NASA’s Space Launch System rocket at Stennis Space Center in Mississippi was not completed as planned. The SLS is the vehicle meant to propel a crewed mission to the moon in 2024. Source: NASA TelevisionAmong the executive orders President Trump issued during his last weeks in office was “Promoting Small Modular Reactors for National Defense and Space Exploration,” which builds on the Space Policy Directives published during his term. The order, issued on January 12, calls for actions within the next six months by NASA and the Department of Defense (DOD), together with the Department of Energy and other federal entities. Whether the Biden administration will retain some, all, or none of the specific goals of the Trump administration’s space nuclear policy remains to be seen, but one thing is very clear: If deep space exploration remains a priority, nuclear-powered and -propelled spacecraft will be needed.The prospects for near-term deployment of nuclear propulsion and power systems in space improved during Trump’s presidency. However, Trump left office days after a hot fire test of NASA’s Space Launch System (SLS) rocket did not go as planned. The SLS rocket is meant to propel crewed missions to the moon in 2024 and to enable a series of long-duration lunar missions that could be powered by small lunar reactor installations. The test on January 16 of four engines that were supposed to fire for over eight minutes was automatically aborted after one minute, casting some doubt that a planned November 2021 Artemis I mission can go ahead on schedule.Go to Article
U.K. launches study into nuclear-powered space explorationA new research contract between the U.K. Space Agency and Rolls-Royce will see planetary scientists working together to explore nuclear power as an energy source for deep space missions in the decades to come. The effort is similar to one that the United States is undertaking through NASA."Space nuclear power and propulsion is a game-changing concept that could unlock future deep-space missions that take us to Mars and beyond," said Graham Turnock, chief executive of the U.K Space Agency, on January 12. "This study will help us understand the exciting potential of atomic-powered spacecraft, and whether this nascent technology could help us travel further and faster through space than ever before."Go to Article
The year in review 2020: Waste ManagementHere is a look back at the top stories of 2020 from our Waste Management section in Newswire and Nuclear News magazine. Remember to check back to Newswire soon for more top stories from 2020.Waste Management sectionFirst-ever cleanup of uranium enrichment plant celebrated at Oak Ridge: The completion of the decades-long effort to clean up the former Oak Ridge Gaseous Diffusion Plant was celebrated on October 13, with Energy Secretary Dan Brouillette joining U.S. Sen. Lamar Alexander, U.S. Rep. Chuck Fleischmann, Tennessee Gov. Bill Lee, and other state and community leaders at the East Tennessee Technology Park, where the uranium enrichment complex once stood. Read more.Go to Article