ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Argonne scientists use AI to detect hidden defects in stainless steel
Imagine you’re constructing a bridge or designing an airplane, and everything appears flawless on the outside. However, microscopic flaws beneath the surface could weaken the entire structure over time.
These hidden defects can be difficult to detect with traditional inspection methods, but a new technology developed by scientists at the U.S. Department of Energy’s Argonne National Laboratory is changing that. Using artificial intelligence and advanced imaging techniques, researchers have developed a method to reveal these tiny flaws before they become critical problems.
The Consortium for Advanced Simulation of Light Water Reactors Virtual Meeting
Technical Session|Panel|Sponsored by Advanced Modeling Applications
Wednesday, November 18, 2020|10:00–11:30AM EST
Session Chair:
David Kropaczek (ORNL)
Alternate Chair:
Scott Palmtag (NC State Univ.)
Session Organizer:
Staff Producer:
William Dawn (NC State Univ.)
The Consortium for Advanced Simulation of Light Water Reactors (CASL) was founded in July 2010 as a Department of Energy (DOE) Energy Innovation Hub with the mission to develop, apply, and deploy advanced modeling and simulation (M&S) technologies to address operational and safety performance challenges impacting the performance of the Light Water Reactor fleet. Over its history CASL developed, evolved and executed a unique model encompassing governance, program management, technical leadership, external science and industry oversight, and technical deliverables. This panel focuses on lessons learned from leaders within the CASL program representing perspectives from the DOE laboratories, academia and industry.
To access the session recording, you must be logged in and registered for the meeting.
Register NowLog In
To join the conversation, you must be logged in and registered for the meeting.