ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Marko Maucec
Nuclear Technology | Volume 132 | Number 2 | November 2000 | Pages 179-195
Technical Paper | Fission Reactors | doi.org/10.13182/NT00-A3137
Articles are hosted by Taylor and Francis Online.
The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as "pressed-only" low-density Al2O3 and AlF3, are considered. The proposed version of the BNCT facility, with PbF2 as the epithermal neutron filter/moderator, provides an epithermal neutron flux of ~1.1 × 109 n/cm2s, thus enabling patient irradiation times of <60 min. With reasonably low fast neutron and photon contamination ([overdot]Dnfast/epi < 5 × 10-13 Gycm2/n and [overdot]D /epi < 3 × 10-13 Gycm2/n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs.