ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
A. Uchibori, H. Ohshima
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 83-94
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8853
Articles are hosted by Taylor and Francis Online.
A numerical analysis method for melting/solidification phenomena has been developed to evaluate feasibility of the several candidate techniques in the nuclear fuel cycle. Our method is based on the extended finite element method, which has been used for moving boundary problems. The basic idea of the extended finite element method is to incorporate the signed distance function into the standard finite element interpolation to represent a discontinuous gradient of the temperature at a moving solid-liquid interface. This technique makes it possible to simulate movement of the solid-liquid interface without the use of a moving mesh. Construction of the finite element equation from the energy equation in the case of melting/solidification problems has been discussed and is reported here. The technique of quadrature and the method to solve the governing equations for the problem involving liquid flows have also been constructed in the present work. The numerical solutions of the basic problems - a one-dimensional Stefan problem, solidification in a two-dimensional square corner, and melting of pure gallium - were compared to the exact solutions or to the experimental data. Through these verifications, validity of the newly developed numerical analysis method has been demonstrated.