ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Charles W. Forsberg
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 18-26
Technical Paper | Special Issue on Nuclear Hydrogen Production, Control, and Management | doi.org/10.13182/NT09-A6964
Articles are hosted by Taylor and Francis Online.
The Hydrogen Intermediate and Peak Electrical System (HIPES) is a new proposed system that uses low-cost off-peak electricity or base-load nuclear energy to economically produce electricity for peak electrical demand, spinning reserve, and power regulation. HIPES has three major subsystems. Hydrogen and oxygen are produced from water using (a) off-peak electricity by methods such as electrolysis or (b) steady-state hydrogen production methods such as nuclear-hydrogen production with thermochemical cycles. The two gases are stored in large underground facilities using the same technologies used for the seasonal storage of natural gas. Peak electricity is produced by an advanced steam turbine with a burner that combines stored H2, O2, and water to produce high-pressure 1500°C steam, which serves as feed to a special high-temperature steam turbine with actively cooled blades. The steam plant efficiency is ~70%. HIPES power outputs can be rapidly varied to match changing electricity demand because the slow-response component of a traditional steam system (the boiler) has been eliminated. The economics are based on (a) the low cost of large-scale underground gas storage, (b) a low-capital-cost efficient method to convert hydrogen and oxygen into peak electricity (no steam boiler), and (c) the large differences in the prices of base-load and off-peak power relative to the premium prices paid for peak power production, spinning reserve, and power regulation. The technology, markets, and economics are described.