ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Mathew W. Swinney, Douglas E. Peplow, Bruce W. Patton, Andrew D. Nicholson, Daniel E. Archer, Michael J. Willis
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 325-335
Technical Paper | doi.org/10.1080/00295450.2018.1458558
Articles are hosted by Taylor and Francis Online.
The detection of radioactive sources in an urban setting is greatly complicated by natural background radiation, which emanates from various materials including roadways, sidewalks, soil, and building exteriors. The method presented and demonstrated here represents an effort to characterize the concentration of naturally occurring radioactive material (NORM) in these types of materials. The location surveyed in this work was the Fort Indiantown Gap Combined Arms Collective Training Facility in Lebanon County, Pennsylvania. Over 70 measurements with a high-purity germanium detector were performed to ascertain the NORM concentrations present in the soil, asphalt, gravel, concrete, and walls found throughout the site. Monte Carlo radiation transport calculations were used to obtain detector responses for these various geometries and materials to convert these measurements into NORM concentration estimates. Finally, synthetic spectra were simulated using the predicted source terms and compared to actual measurements, showing acceptable agreement.