ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Olivier Jaquet, Charles Connor, Laura Connor
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 180-189
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3980
Articles are hosted by Taylor and Francis Online.
Because of the difficulty of describing the complex spatial and temporal patterns inherent to volcanism, the use of solely deterministic models is not sufficient for long-term estimation of volcanic hazards. In order to account for the intrinsic uncertainty of volcanism that occurs in space and time and with respect to event types and their intensity, the use of probabilistic models becomes quite natural for long-term hazard assessment. Here, we discuss a range of probabilistic approaches to forecast the future spatial distribution of volcanism, including kernel, adaptive kernel, and Cox process methods. An application to the volcanic arc of Tohoku illustrates the proposed methodology.