ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Salih Güntay, Robin C. Cripps, Bernd Jäckel, Horst Bruchertseifer
Nuclear Technology | Volume 150 | Number 3 | June 2005 | Pages 303-314
Technical Paper | Radioisotopes | doi.org/10.13182/NT05-A3624
Articles are hosted by Taylor and Francis Online.
The decomposition of aqueous colloidal suspensions of AgI induced by ionizing radiation was investigated under various conditions using 188Re as an in situ beta-radiation source. The suspensions were stabilized by an initial excess of either I- or Ag+ ions. Although the results were somewhat scattered, the following trends were observed. With an initial excess of I- and under strong oxidizing conditions (N2O sparging) at pH 2, ~65% AgI was decomposed into nonvolatile and volatile iodine (ratio 2:1) for doses of ~20 kGy, and up to ~80% was decomposed (mostly nonvolatile iodine) at pH 5. Chloride ions greatly enhanced the volatile and lowered the nonvolatile fractions. Little decomposition (<10%) was obtained with air sparging at both pH 2 and pH 5. Chloride ions increased the maximum decompositions to ~60% (~47% volatile) and ~20% (mainly nonvolatile iodine), respectively. With an initial excess of Ag+ with N2O sparging and at pH 2 and pH 5, very little volatile iodine was produced. The maximum decomposition was ~20% after ~20 kGy. Chloride ion addition at pH 2 had greatly enhanced the volatile iodine yield. The relevance of these results to the possible release of iodine to the environment following a nuclear reactor accident is discussed.