ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Kevan D. Weaver, Philip E. MacDonald
Nuclear Technology | Volume 147 | Number 3 | September 2004 | Pages 457-469
Technical Paper | Medium-Power Lead-Alloy Reactors | doi.org/10.13182/NT04-A3542
Articles are hosted by Taylor and Francis Online.
Various methods have been proposed to transmute and thus consume the current inventory of transuranic waste from spent light water reactor (LWR) fuel and plutonium from weapons. We discuss the neutronics performance of nonfertile, fertile metallic, and fertile nitride fuels loaded with 20 to 30 wt% LWR-grade plutonium plus minor actinides and burned in an open-lattice lead-alloy-cooled fast reactor, with an emphasis on the fuel cycle life and spent fuel isotopic content. As a comparison, similar fuel was also studied in a sodium-cooled fast reactor. Our calculations show that the average actinide burn rate for fertile-free fuel is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 1.02 to 1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. In addition, our calculations show that the effective full-power days (EFPDs) of operation (or equivalent reactivity-limited burnup) using fertile fuel can extend beyond 20 yr, and the average actinide burn rate is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 0.5 to 0.9 g/MWd. Using the same parameters (i.e., a large pitch-to-diameter ratio, same linear power, and fissile/fertile loading, etc.), the lead-alloy-cooled cases had an EFPD that was 18% to several times greater than their sodium-cooled counterparts. However, tight sodium-cooled lattices are equivalent to the looser lead-alloy lattices in terms of beginning-of-life excess reactivity.