ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Brent J. Lewis, Aamir Husain
Nuclear Technology | Volume 140 | Number 3 | December 2002 | Pages 279-287
Technical Paper | Radiation Protection | doi.org/10.13182/NT02-A3339
Articles are hosted by Taylor and Francis Online.
A general methodology was developed to estimate geometry factors for internal gamma dose rate calculations within a cylindrical radioactive waste container. In particular, an average geometry factor is needed to calculate the average energy deposition rate within the container for determination of the internal gas generation rate. Such a calculation is required in order to assess the potential for radioactive waste packages to radiolytically generate combustible gases.This work therefore provides a method for estimating the point and average geometry factors for internal dose assessment for a cylindrical geometry. This analysis is compared to other results where it is shown that the classical work of Hine and Brownell do not correspond to the average geometry factors for a cylindrical body but rather to values at the center of its top or bottom end. The current treatment was further developed into a prototype computer code (PC-CAGE) that calculates the geometry factors numerically for a cylindrical body of any size and material, accounting both for gamma absorption and buildup effects.