ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Kazuyuki Takase, Kunugi Tomoaki, Masurou Ogawa, Yasushi Seki
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 223-231
Technical Paper | doi.org/10.13182/NSE97-A24269
Articles are hosted by Taylor and Francis Online.
As one of thermofluid safety studies in the International Thermonuclear Experimental Reactor, buoyancy-driven exchange flow behavior through breaches of a vacuum vessel (VV) has been investigated quantitatively by using a preliminary loss-of-vacuum-event (LOVA) apparatus that simulated the tokamak VV of a fusion reactor with a small-scaled model. To carry out the present experiments under the atmospheric pressure condition, helium gas and air were provided as the working fluids. The inside of the VV was initially filled with helium gas and the outside was atmosphere. The breaches on the VV under the LOVA condition were simulated by opening six simulated breaches to which were set the different positions on the VV. When the buoyancy-driven exchange flow through the breach occurred, helium gas went out from the inside of the VV through the breach to the outside and air flowed into the inside of the VV through the breach from the outside. The exchange rate in the VV between helium gas and air was calculated from the measured weight change of the VV with time since the experiment has started. Experimental parameters were breach position, breach number, breach length, breach size, and breach combination. The present study clarifies that the relation between the exchange rate and the breach position of the VV depended on the magnitude of the potential energy from the ground level to the breach position, and then, the exchange rate decreased as the breach length increased and as the breach size decreased.