ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
J. F. Proctor, I. W. Marine
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 350-365
Technical Paper | doi.org/10.13182/NSE65-A20939
Articles are hosted by Taylor and Francis Online.
A recent investigation established the technical feasibility and indicated the high degree of safety that could be afforded by the storage of high-level radioactive wastes in unlined vaults excavated in crystalline rock 1500 ft beneath the surface of the Savannah River Plant near Aiken, S. C. The crystalline rock at the proposed site is covered by 1000 ft of unconsolidated sediments conSisting predominantly of sand and clay. A virtually impermeable layer of clay separates the rock from the overlying sediments in which several prolific water-bearing zones occur. The separation of the waters above and below this clay layer is confirmed by their different chemical composition and by the presence of dissolved helium-bearing gas only in the water in the rocks beneath the clay. Based on geologic and hydrologic information obtained in an intensive drilling and testing program, upper limits on the rates of water movement through the crystalline rock are calculated to be 1.5 to 7 ft/year, depending upon the degree of fracturing of the rock. Comparable data on the unconsolidated sediments lead to a calculated maximum rate of water movement of 350 ft/year. The most significant driving force for the migration of radionuclides from the storage site is derived from the natural water movement, coupled with effects due to dispersion and ion exchange. Characteristics of the waste, heat generation, and radiolysis have, by contrast, only small effects on migration. Three barriers prevent migration of the radionuclides: the very low permeability of the rock in which the storage vault is located, the virtually impermeable clay layer separating the rock and sediments, and the ion exchange properties of the sediments. Anyone of these barriers is capable of confining the radionuclides well within the plant boundaries for a time much greater than the 600-year period required to render the wastes innocuous.