ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Glen A. Mortensen and Harold P. Smith, Jr.
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 321-327
Technical Paper | doi.org/10.13182/NSE65-A20936
Articles are hosted by Taylor and Francis Online.
The time dependent P1 approximation to the neutron transport equation has been solved for the case of an oscillating source on one face of a finite parallelepiped. An oscillatory solution to the differential equations describes the propagation of neutron waves through the medium. Attenuation lengths of plane neutron waves were identical at low frequencies (ω < ½ νΣa) for the P1 and diffusion approximations but differ considerably at high frequencies (ω > 2ν Σtr). Wave lengths and wave speeds for the two approximations were slightly different at low frequencies, identical at immediate frequencies and considerably different at high frequencies. A new method, which considers the transient behavior of a spatially-integrated positive-definite function of flux and current, is used to show that the transient part of the solution decays to zero.