ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Dean Wang, Sicong Xiao
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 45-55
Technical Paper | doi.org/10.1080/00295639.2017.1417347
Articles are hosted by Taylor and Francis Online.
In this paper, we propose a new prolongation method to replace the conventional flat flux ratio–based scaling approach of coarse-mesh finite difference (CMFD) for updating the flux. The new prolongation method employs a linear interpolation of the scalar flux differences at the coarse-mesh cell edges between the neutron transport and CMFD calculations. This linear prolongation scheme, called lpCMFD, can greatly improve the stability of CMFD, particularly for problems with large optical thickness. A detailed convergence study of lpCMFD based on Fourier analysis and numerical testing shows that lpCMFD is unconditionally stable and effective for a wide range of optical thicknesses.