ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Takashi Takata, Akira Yamaguchi, Kaori Fukuzawa, Kiyoshi Matsubara
Nuclear Science and Engineering | Volume 150 | Number 2 | June 2005 | Pages 221-236
Technical Paper | doi.org/10.13182/NSE05-A2511
Articles are hosted by Taylor and Francis Online.
A numerical methodology of sodium-water reaction (SWR) and a coupling method of SWR and multiphase flow analysis are proposed. Two SWR models are considered. One is a surface reaction model, which assumes that water vapor reacts with liquid sodium at the gas-liquid interface. The surface reaction is likely to be dominant in the initial phase of SWR. The analogy between mass and heat transfers is assumed to evaluate the diffusion-controlled reaction rate. The other is a gas-phase reaction model. If chemical reaction heating due to the surface reaction is large enough to vaporize the liquid sodium, it turns over in the gas-phase reaction. In the gas-phase reaction, water vapor reacts with sodium gas. The reaction mechanisms in the gas-phase reaction are investigated using an ab initio molecular orbital method. The reaction rate of the gas-phase reaction described by the Arrhenius law is obtained from the transition-state theory or the capture theory. The reaction models are employed in a compressible multifluid and one-pressure model using the Highly Simplified Marker and Cell method for multiphase flow analysis. As numerical examples, surface reaction with multiphase flow analysis and simplified gas-phase reaction analyses are carried out. It is confirmed that the present method is practically applicable to the coupling phenomena of SWR and multiphase flow.