ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
M. J. Rivard, B. L. Kirk, L. C. Leal
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 101-106
Technical Paper | doi.org/10.13182/NSE05-A2480
Articles are hosted by Taylor and Francis Online.
Radiation dose distributions of brachytherapy sources are generally characterized with the assumption that all internal components are equally radioactive. Autoradiographs and discussions with source manufacturers indicated this assumption of the radionuclide physical distribution may be invalid. Consequently, clinical dose distributions would be in error when not accounting for these internal variations. Many implants use brachytherapy sources with four 125I resin beads and two radiopaque markers used for imaging. Monte Carlo methods were used to determine dose contributions from each of the resin beads. These contributions were compared with those from an idealized source having a uniform physical distribution. Upon varying the 125I physical distribution while retaining the same overall radioactivity, the dose distribution along the transverse plane remained constant within 5% for r > 0.5 cm. For r 0.5 cm, relative positioning of the resin beads dominated the shielding effects, and dose distributions varied up to a factor of 3 at r = 0.05 cm. For points off the transverse plane, comparisons of the uniform and nonuniform dose distributions produced larger variations. Shielding effects within the capsule were virtually constant along the source long axis and demonstrated that anisotropy variations among the four resin beads were dependent on internal component positioning.