ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Hiroki Sono, Hiroshi Yanagisawa, Akio Ohno, Takuji Kojima, Noboru Soramasu
Nuclear Science and Engineering | Volume 139 | Number 2 | October 2001 | Pages 209-220
Technical Paper | doi.org/10.13182/NSE01-A2232
Articles are hosted by Taylor and Francis Online.
To evaluate neutron and gamma-ray absorbed doses in human bodies at criticality accidents, two kinds of tissue-equivalent dosimeters, a polymer-alanine dosimeter and a thermoluminescent dosimeter (TLD) made of 7Li211B4O7, were applied to dosimetry experiments with ~10% enriched uranyl nitrate solution at the Transient Experiment Critical Facility (TRACY) in the Japan Atomic Energy Research Institute. For the experiments, five transient operations were conducted to simulate criticality accidents by varying the conditions of reactivity addition. Very high doses from both neutrons and gamma rays were successfully measured in the range of 1.5 to 1600 Gy by using polymer-alanine dosimeters. The gamma-ray doses were able to be determined in the range of 1 to 900 Gy by using 7Li211B4O7 TLDs. In addition, it is confirmed that the doses are proportional to integrated power during transient operations although the conditions of reactivity addition are different. Since the sensitivity of 7Li211B4O7 to gamma rays is almost the same as that of alanine, the neutron doses are easily evaluated without any complicated correction by subtracting the gamma-ray doses obtained by the 7Li211B4O7 TLDs from the sum of neutron and gamma-ray doses by the polymer-alanine dosimeters. As a result of computational analyses by the MCNP4B code, it is also found that calculated doses agree with measured ones within 95% confidence intervals and the MCNP4B is applicable to the evaluation of neutron and gamma-ray absorbed doses during the transient.