ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. Marseguerra, F. Mazzarella
Nuclear Science and Engineering | Volume 133 | Number 3 | November 1999 | Pages 293-300
Technical Paper | doi.org/10.13182/NSE99-A2089
Articles are hosted by Taylor and Francis Online.
Nowadays, using artificial neural networks (ANNs) to perform interesting input/output mappings in various industrial contexts has become almost routine. Indeed, the nonlinear features of this algorithm allow one to deal with real complex systems such as those encountered in the nuclear field.Here, an ANN algorithm is applied to determine the relationships that exist between some process variables pertaining to the operation of the steam generator of a pressurized water reactor. The exemplars required for the ANN training are obtained from a suitable nonlinear, mathematical model, numerically integrated, whose solution yields pseudo-experimental data that simulate data that would be collected in a real experiment. In the training phase, Ishikawa structural learning that aims at eliminating the unnecessary network connections is performed. After completion of training, without the analyst's intervention, the resulting ANN topology consists of the superposition of three distinct and smaller ANNs. This implies that the network, on the basis of the given exemplars only, without knowledge of the physical laws, is able by itself to decide that the relevant input/output variables could be partitioned in independent groups. The ANNs so identified turn out to be so simple that their mappings could be easily translated into empirical algebraic correlations. Numerical tests validate the correlations thereby obtained.