ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
K. F. Hansen, B. V. Koen, W. W. Little, Jr.,
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 51-59
Technical Paper | doi.org/10.13182/NSE65-A19762
Articles are hosted by Taylor and Francis Online.
A numerical procedure for the integration of the reactor kinetics equation is developed. It has the property of being numerically unconditionally stable for all values of the reactivity or integration-step size. The basic assumption of the method is that the neutron and precursor densities behave exponentially with a frequency characteristic of the asymptotic frequency corresponding to the reactivity. As a consequence of the assumption, and the factoring of the kinetics equation, it is then shown that for constant reactivity the asymptotic numerical eigensolution is exactly the asymptotic eigensolution of the differential kinetics equations. Thus, for constant reactivity, the asymptotic numerical solution can be shown to differ from the asymptotic analytic solution by at most a constant factor, proportional to ht2, for all time.