ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
K. F. Hansen, B. V. Koen, W. W. Little, Jr.,
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 51-59
Technical Paper | doi.org/10.13182/NSE65-A19762
Articles are hosted by Taylor and Francis Online.
A numerical procedure for the integration of the reactor kinetics equation is developed. It has the property of being numerically unconditionally stable for all values of the reactivity or integration-step size. The basic assumption of the method is that the neutron and precursor densities behave exponentially with a frequency characteristic of the asymptotic frequency corresponding to the reactivity. As a consequence of the assumption, and the factoring of the kinetics equation, it is then shown that for constant reactivity the asymptotic numerical eigensolution is exactly the asymptotic eigensolution of the differential kinetics equations. Thus, for constant reactivity, the asymptotic numerical solution can be shown to differ from the asymptotic analytic solution by at most a constant factor, proportional to ht2, for all time.