ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Rashmi C. Desai, Mark Nelkin
Nuclear Science and Engineering | Volume 24 | Number 2 | February 1966 | Pages 142-152
Technical Paper | doi.org/10.13182/NSE66-A18299
Articles are hosted by Taylor and Francis Online.
The time-dependent moments equations derived from the linearized Boltzmann equation are solved for the case of an infinite nonabsorbing medium of hard spheres. The distribution function at zero time is chosen to be Maxwellian at origin and zero elsewhere. The solutions can be applied to neutron diffusion in monatomic hydrogen and to the motion of atoms in a dilute monatomic gas. In the latter case, the solutions give the spatial moments of Van Hove's self-correlation function Gs(,t). Non-Gaussian corrections to Gs(, t) are studied. It is found that these corrections are very sensitive to the type of anisotropy of the scattering kernel. Various approximations (including synthetic kernel) of the exact kernel for a hard sphere gas are considered. The non-Gaussian corrections obtained from approximate kernels are compared with those obtained from the exact kernel. In particular, a recently published kinetic model calculation, using a separable isotropic kernel with l/v scattering cross section, overestimates the non-Gaussian corrections by a factor of almost 4.