ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Sergey S. Gorodkov
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 193-201
Technical Paper | doi.org/10.13182/NSE11-105
Articles are hosted by Taylor and Francis Online.
Significant underprediction bias in uncertainties of neutron flux is observed in Monte Carlo criticality calculations of large cores. It is universally recognized that this underprediction is closely associated with the ratio of the second-largest eigenvalue to the largest eigenvalue, or the dominance ratio, of the fission kernel. In this paper a close analogy is presumed between neutron flux autocorrelations in Monte Carlo calculations and flux variances due to stochastic uncertainties of the properties of fuel assemblies within the manufacturing tolerance limits. Interesting consequences following from this analogy are confirmed in quite realistic calculations. A useful expression is derived for fast evaluation of the minimal number of histories to be modeled to achieve preset confidence limits of flux distribution in large cores.