ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
John Loberg, Michael Österlund, Klaes-Håkan Bejmer, Jan Blomgren, Jesper Kierkegaard, Sten-Örjan Lindahl
Nuclear Science and Engineering | Volume 167 | Number 3 | March 2011 | Pages 221-229
Technical Paper | doi.org/10.13182/NSE09-105
Articles are hosted by Taylor and Francis Online.
Models of the neutron flux shape in a withdrawn control rod in a boiling water reactor (BWR) bottom reflector have been constructed from simulations with the Monte Carlo code MCNP. These neutron flux models are intended for determining absorber depletion and fast fluence accumulation for withdrawn control rods with nodal codes.So-called G-factors are created for coupling the neutron flux models to a conventional nodal code via the core bottom neutron flux.The neutron flux models and G-factors are created for three different neutron energies, and their dependence on various parameters such as blanket enrichments, Hf and B4C control rod absorber, and depletion and reflector geometry is investigated.The neutron flux models and G-factors are found to be very insensitive; the neutron flux models predict the simulated neutron flux in the withdrawn control rod from MCNP over a variety of reflector configurations with an error < 3.0%. This implies that the neutron flux models constructed in this paper are generally applicable for BWR reflectors and control rods not fundamentally deviating from the designs investigated in this paper.