ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Ohio announces $100M Energy Opportunity Initiative fund
Ohio Gov. Mike DeWine recently announced the creation of the new JobsOhio Energy Opportunity Initiative, a $100 million fund that will be used in part to attract supply chain companies for small modular reactor manufacturing and for the creation of “nuclear energy center of excellence.”
T. L. Sanders‡, D. E. Klein, M. E. Crawford
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 251-256
Blanket and First-Wall Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40053
Articles are hosted by Taylor and Francis Online.
A liquid metal facility using the eutectic composition of sodium and potassium (NaK) as the working fluid has been designed and constructed at The University of Texas at Austin. The facility is capable of experimentally modeling magnetohydrodynamic flow through many of the geometries envisioned for fusion related systems, particularly blanket designs. A study currently in progress involves the measurement of the magnetohydraulic pressure drop across a packed bed of electrically conducting spheres. Reynolds numbers based on volume flow rate and sphere diameter range from 5 to 300, and Hartmann numbers range from 0 to 200, resulting in an interaction parameter range up to 4000.