ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
H. Attaya
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1331-1336
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29527
Articles are hosted by Taylor and Francis Online.
Manganese-stabilized steels have been proposed as candidate structural materials for fusion reactors, because they have been perceived as “low-activation” materials. Depending on the neutron spectra and the neutron fluence, the decay heat in Mn-stabilized steels is about 3–7 times larger than that in the Ni-stabilized steels. This large amount of decay heat could have serious impact in the case of the loss of coolant accident (LOCA). A two-dimensional LOCA model has been used to examine the LOCA temperature response of the manganese steel when utilized in an earlier U.S. design of ITER. The results show that the Mn-steel has approached its melting temperature by less than 100°C after about 7 hours from the onset of LOCA. On the other hand, the results for the nickel stabilized steel alloy 316SS show that the maximum temperature reached is 532°C in about the same time.