ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
O. Ågren, V. E. Moiseenko, K. Noack, A. Hagnestål
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 326-334
Technical Paper | doi.org/10.13182/FST57-326
Articles are hosted by Taylor and Francis Online.
The straight field line mirror (SFLM) field with magnetic expanders beyond the confinement region is proposed as a compact device for transmutation of nuclear waste and power production. A design with reactor safety and a large fission-to-fusion energy multiplication is analyzed. Power production is predicted with a fusion Q = 0.15 and an electron temperature of [approximately]500 eV. A fusion power of 10 MW may be amplified to 1.5 GW of fission power in a compact hybrid mirror machine. In the SFLM proposal, quadrupolar coils provide stabilization of the interchange mode, radio-frequency heating is aimed to produce a hot sloshing ion plasma, and magnetic coils are computed with an emphasis on minimizing holes in the fission blanket through which fusion neutrons could escape. Neutron calculations for the fission mantle show that nearly all fusion neutrons penetrate into the fission mantle. A scenario to increase the electron temperature with a strong ambipolar potential suggests that an electron temperature exceeding 1 keV could be reached with a modest density depletion by two orders in the expander. Such a density depletion is consistent with stabilization of the drift cyclotron loss cone mode.