ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Masatoshi Kondo et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 190-194
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8900
Articles are hosted by Taylor and Francis Online.
Molten salt LiF-BeF2 (Flibe) is one of candidates for self-cooled tritium breeder in fusion blanket system. The Ni based alloys of Hastelloy C-276 (6.28Fe, 15.67Cr, 0.42Mn, 15.83Mo, 3.34W, Ni as balance), Inconel 600(7.02Fe, 15.75Cr, Ni as balance) and Inconel 625 (4.12Fe, 21.94Cr, 9.10Mo, Ni as balance) are candidates of structural material of blanket loop components at down stream. Corrosion characteristics of these alloys were investigated by corrosion test in static Flibe at 500°C and 600°C for 1000 hours. The corrosion rates were estimated from the weight losses of specimens, and those of Hastelloy C-276, Inconel 600 and Inconel 625 in Flibe at 600°C were 3.4m/year, 2.8m/year and 1.1m/year, respectively. The mass balance between the weight losses of specimens and the increase of impurity in Flibe by the exposure was investigated, and it was found that the corrosion was mainly caused by the depletion of Cr from the alloys. The corroded surface had high Ni concentration after the Cr depletion by corrosion, and this is expected to be corrosion resistant in Flibe.