ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
E. H. Lundgren, A. C. Forsman
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 325-330
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A6958
Articles are hosted by Taylor and Francis Online.
A variety of shaped fill holes is needed in beryllium capsules for inertial confinement fusion experiments to allow for pyrolysis of the plastic (CH) mandrels, deuterium (D2) or deuterium-tritium gas fill, and fill tube attachments. The holes required include through-holes ranging in diameters from ~5 to 30 m and counterbores ranging in diameters from ~13 to 17 m with depths <37 m. These holes are laser drilled using a double-pulse nanosecond format. Hole diameter and depth can be controlled by altering pulse format, energy, and beam delivery optics. Furthermore, according to National Ignition Campaign specifications, there is a tight tolerance for perturbations on capsule surfaces, so we have developed a technique to eliminate material redeposition through the use of sacrificial foils stretched over the targeted areas.