ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
Vasily K. Gusev, Nikolai V. Sakharov, Vitaly V. Shpeizman, Vladimir A. Korotkov, Anatoly G. Panin, Vladimir F. Soikin, Seppo O. J. Kivivuori, Asko J. Helenius, Jukka V. A. Somerkoski, Jukka A. Heikkinen
Fusion Science and Technology | Volume 34 | Number 2 | September 1998 | Pages 137-146
Technical Paper | doi.org/10.13182/FST98-A59
Articles are hosted by Taylor and Francis Online.
The central solenoid is a critical component of the spherical tokamak Globus-M (plasma major radius R = 0.36 m, plasma minor radius a = 0.24 m, aspect ratio R/a = 1.5, toroidal magnetic field BT 0.62 T, plasma current Ip 0.5 MA). The two-layer solenoid, 1312 mm long with a 200-mm outer diameter, is located between the 112-mm-diam inner rod of the toroidal field coils and the 217-mm-diam inner cylinder of the vacuum vessel. Strong magnetic and thermal cyclic loads acting on the solenoid require that it be manufactured from a high-strength hollow conductor. The conductor material selected for the solenoid winding is CuAg0,1(OF). Advanced manufacturing technology has made it possible to increase the continuous length of conductor (with an ~20 × 20 mm2 cross section) up to the 66 m that is required for Globus-M. To verify the winding procedure, a one-sixth-length solenoid prototype has been constructed and tested with loads exceeding the design loads acting on the full-scale solenoid. The tests included magnetic and strain measurements. The results are in satisfactory agreement with structural analysis.