ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. Gormezano, P. Buratti, M. L. Apicella, E. Barbato, G. Bracco, A. Cardinali, C. Castaldo, R. Cesario, S. Cirant, F. Crisanti, M. de Benedetti, B. Esposito, D. Frigione, L. Gabellieri, E. Giovannozzi, G. Granucci, H. Kroegler, M. Leigheb, M. Marinucci, D. Pacella, L. Panaccione, V. Pericoli-Ridolfini, L. Pieroni, S. Podda, F. Romanelli, M. Romanelli, P. Smeulders, C. Sozzi, A. A. Tuccillo, O. Tudisco
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 303-322
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A516
Articles are hosted by Taylor and Francis Online.
The main physics results achieved in the recent years in the Frascati Tokamak Upgrade (FTU) are reviewed. The main focus of research has been the development of performance plasmas at high densities (up to 4 × 1020 m-3), high magnetic field (up to 8 T) and plasma current (up to 1.6 MA), that are therefore in a domain of relevance for burning physics experiments such as ITER. The main tools consist in the development of plasma conditioning techniques and the use of various electron heating and current drive systems. Improved confinement regimes have been developed, including (a) the production of steady electron internal transport barriers at high density and electron temperature (up to central electron temperature of 11 keV at a central density of 0.9 × 1020 m3), (b) the production of repetitive pellet enhanced plasma modes with deep pellet deposition leading to a substantial increase of the neutron yield (and a record FTU value of the fusion product niTiE up to 0.8 × 1020 m-3 keVs), and (c) the production of radiation improved modes at high magnetic field. Main results on the supporting physics program will also be given in the domain of plasma wave physics (lower hybrid current drive, electron cyclotron resonance frequency, ion Bernstein waves), heat and impurities transport, and magnetohydrodynamic studies.