ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
F. Durut, R. Botrel, E. Brun, S. Le Tacon, C. Chicanne, O. Vincent-Viry, M. Theobald, V. Vignal
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 341-350
Technical Paper | doi.org/10.13182/FST15-230
Articles are hosted by Taylor and Francis Online.
Pure gold-copper alloys are known to be difficult to electrodeposit because of a strong variation in composition after a few microns have been deposited. Commissariat à l’Energie Atomique (CEA) studied the phenomenon and showed that the decrease in gold’s content is accompanied by an evolution of the microstructure that could be attributed to the free cyanide released near the cathode. During electrolysis, free cyanides provoke a decrease of the copper overpotential (until copper reduction is stopped) and promote the formation of Cu(CN)43− that conduct to an instantaneous three-dimensional nucleation of copper. This phenomenological model well explains why the growth mechanism changes and why only gold is deposited for thick deposits. On the basis of this model, CEA has developed a specific process using ultrasonic waves in order to remove the free cyanides from the cathode. This process allows CEA to perform thick gold-copper deposits with a constant concentration in copper through all the thickness. By controlling the applied potential, different thick alloys with a concentration of copper between 0 wt% up to 40 wt% can be deposited.