ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Y. Nakashima, M. Sakamoto, H. Takeda, K. Ichimura, Y. Hosoda, M. Iwamoto, K. Shimizu, K. Hosoi, K. Oki, M. Yoshikawa, M. Hirata, R. Ikezoe, T. Imai, T. Kariya, I. Katanuma, J. Kohagura, R. Minami, T. Numakura, X. Wang, M. Ichimura
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 28-35
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-882
Articles are hosted by Taylor and Francis Online.
This paper describes the recent results of divertor simulation research toward the realization of the detached plasma using the end-mirror of a large tandem mirror device. The additional ion cyclotron range of frequency heating in the anchor-cells for higher particle flux generation significantly increases the density, which attained the highest particle flux up to 1.76×1023 particles/s·m2 at the end-mirror exit. Massive gas injection (H2 and noble gases) into the divertor simulation experimental module (D-module) was performed, and a remarkable reduction of the electron temperature on the target plate was successfully achieved associated with the strong reduction of particle and heat fluxes in D-module. Two-dimensional images of Hα emission in D-module observed with a high-speed camera showed strong emission in the upstream region and significant reduction near the target plate. These results clarified the effect of radiation cooling and formation of detached plasma due to gas injection. It is also found that Xe gas is much more effective in achieving detached plasma than Ar gas. Numerical simulation studies also have been performed toward the understanding of the cooling mechanism of divertor plasma. The above results will contribute to establishment of detached plasma control and clarification of the radiation cooling mechanism toward the development of future divertor systems.