ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Mitchell R. Swartz
Fusion Science and Technology | Volume 31 | Number 1 | January 1997 | Pages 63-74
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST97-A30780
Articles are hosted by Taylor and Francis Online.
Electrochemical experiments, using nickel cathodes in light water solutions, were used to examine the enthalpy generated by electrically driving each electrode pair compared with ohmic controls contained within the same solution. For nickel wire cathodes, the peak power amplification (πNi) was in the range of 1.44±0.58. For spiral-wound nickel cathodes with platinum foil anodes, πNi was 2.27±1.02. By contrast, neither iron nor aluminum cathodes demonstrated excess heat. Driving these nickel samples beyond several volts, however, produced an exponential falloff of the power gain. This biphasic response to increasing input power may be consistent with the quasi-one-dimensional model of isotope loading and may contribute to the difficulty of reproducing these phenomena.