ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
Charles E. Kessel, Marc A. Firestone,, Robert W. Conn
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 391-411
Technical Paper | Plasma Engineering | doi.org/10.13182/FST90-A29216
Articles are hosted by Taylor and Francis Online.
The control of plasma position, shape, and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non-up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control, relying on the scalar/orthogonalized description, will be severely strained.