ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Steven J. Pemberton, Ryan P. Abbott, Per F. Peterson
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 378-383
Technical Paper | Chambers and Chamber Wall Protection Methods | doi.org/10.13182/FST03-A281
Articles are hosted by Taylor and Francis Online.
The use of swirling annular vortex flow inside beam entrance tubes can protect beam-line structural materials in chambers for heavy-ion inertial fusion energy (IFE) applications. An annular wall jet, or vortex tube, is generated by injecting liquid tangent to the inner surface of a tube wall with both axially and azimuthally directed velocity components. A layer of liquid then lines the beam tube wall, which may improve the effectiveness of neutron shielding, and condenses and removes vaporized coolant that may enter the beam tubes. Vortex tubes have been constructed and tested with a thickness of three-tenths the pipe radius. Analysis of the flow is given, along with experimental examples of vortex tube fluid mechanics and an estimate of the layer thickness, based on simple mass conservation considerations.