ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Indonesia begins working on Cs-137 cleanup
In August, there was much buzz about the Food and Drug Administration ordering a recall on frozen shrimp imported from Indonesia that was found to be contaminated with cesium-137. While the level of radioactivity in the shrimp was orders of magnitude below a level that would cause any measurable harm to consumers, the concentration of Cs-137 was nonetheless unusual.
Tatsuya Suzuki, Kazunori Takahashi
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 398-400
doi.org/10.13182/FST13-A16967
Articles are hosted by Taylor and Francis Online.
An electron temperature and a volume-averaged plasma density are experimentally investigated for various argon gas pressure and rf power in permanent-magnets-expanding plasma sources with two different diameters of 6.6 cm and 13.3 cm for the purpose of performance improvement of a electrodeless, magnetically expanding plasma thruster. The results are compared with a global model using particle balance and power balance equations. The theoretical values are in fair agreement with the measured ones. The experimental and modeled results suggest that a ~50 percent increase in the thrust from the electron pressure can be achieved by the enlargement of the source diameter from 6.6 to 13.3 cm.