ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Yosuke Abe, Tomoaki Suzudo, Shiro Jitsukawa, Tomohito Tsuru, Takashi Tsukada
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 139-144
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14126
Articles are hosted by Taylor and Francis Online.
It is known that the presence of even a small amount of impurity in interstitial positions can, depending on temperature, have a drastic influence on the one-dimensional (1-D) motion of self-interstitial atom (SIA) loops, and thus, on the accumulation of radiation damage in materials. In this study, atomic-scale computer simulations based on a recently developed optimization technique have been performed to evaluate the binding energies of SIA loops with interstitial carbon, a vacancy-carbon (V-C) complex, and a vacancy as a function of loop size in -iron. While weak and strong attractive interactions are found when an interstitial carbon atom and a vacancy, respectively, are located on the perimeter of an SIA loop, the interactions for both quickly weaken approaching the loop center. In contrast, for a wide range of loop sizes, significantly higher binding energies are obtained between an SIA loop and a V-C complex located within the habit plane of the loop. A cluster dynamics model was developed by taking into account the trapping effects of V-C complexes on 1-D migrating SIA loops, and preliminary calculations were performed to demonstrate the validity of the assumed trapping mechanism through a comparison of the microstructural evolution with experimental data in neutron-irradiated -iron.