ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Jochen Linke
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 246-255
Edge Physics and Exhaust | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13511
Articles are hosted by Taylor and Francis Online.
The first wall and the divertor in present-day or next step thermonuclear fusion devices are exposed to intense fluxes of charged and neutral particles, in addition the plasma facing materials and components are subjected to radiation in a wide spectral range. These processes, in general referred to as `plasma wall interaction' will have strong influence on the plasma performance, and moreover, they have major impact on the degradation and on the lifetime of the plasma facing armour and the joining interface between the plasma facing material and the heat sink. Beside physical and chemical sputtering processes, thermal fatigue damage due to cyclic heat fluxes during normal operation and intense thermal shocks caused by severe thermal transients are of serious concern for the engineers which develop reliable wall components. In addition, the material and component degradation due to high fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires further extensive research activities. This paper represents a tutorial focussed on the development and characterization of plasma facing components for thermonuclear fusion devices.